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Four modeling techniques, using topological descriptors to represent molecular structure, were employed to
produce models of human serum protein binding (% bound) on a data set of 1008 experimental values,
carefully screened from publicly available sources. To our knowledge, this data is the largest set on human
serum protein binding reported for QSAR modeling. The data was partitioned into a training set of 808
compounds and an external validation test set of 200 compounds. Partitioning was accomplished by clustering
the compounds in a structure descriptor space so that random sampling of 20% of the whole data set produced
an external test set that is a good representative of the training set with respect to both structure and protein
binding values. The four modeling techniques include multiple linear regression (MLR), artificial neural
networks (ANN), k-nearest neighbors (kNN), and support vector machines (SVM). With the exception of
the MLR model, the ANN, kNN, and SVM QSARs were ensemble models. Training set correlation
coefficients and mean absolute error ranged fromr2 ) 0.90 and MAE) 7.6 for ANN to r2 ) 0.61 and
MAE ) 16.2 for MLR. Prediction results from the validation set yielded correlation coefficients and mean
absolute errors which ranged fromr2 ) 0.70 and MAE) 14.1 for ANN to a low ofr2 ) 0.59 and MAE
) 18.3 for the SVM model. Structure descriptors that contribute significantly to the models are discussed
and compared with those found in other published models. For the ANN model, structure descriptor trends
with respect to their affects on predicted protein binding can assist the chemist in structure modification
during the drug design process.

Introduction

Most drugs bind reversibly with varying degrees of associa-
tion to human plasma proteins: serum albumin (HSA), alpha-
1-acid glycoprotein (AGP), and lipoproteins. The degree of
binding, expressed as the percent bound (%PB), varies from
0% to 100%. Reported association constants1,2 range from
∼10-3 to ∼10-10 M-1. For AGP a high value of 5× 10-6 M-1

has been reported for HIV protease inhibitors.3

Since the drug-protein complex in the plasma acts as a
reservoir for the drug, the %PB is an important parameter in
pharmacokinetic profiling. For this reason protein binding
influences many aspects of ADME/Tox properties such as
metabolism, excretion, and in vivo activity. The latter is
especially true when a drug candidate possesses both an
undesirable physicochemical property (e.g., poor aqueous
solubility) as well as an undesirable pharmacological property
(e.g., a high effective concentration requirement). In this case,
the %PB must have a low to moderate value for the potential
candidate to have a successful therapeutic consequence in
clinical trials. In the reverse situation, where %PB is high
(>99.9%) and affinity for HSA is larger than that of the receptor
targeted by the drug, the volume of distribution of the drug
becomes highly restrictive; making it likely the candidate would

be unsuitable as therapeutic agent. For reasons such as these,
much research attention is directed toward managing the protein
binding of drug candidates.

In human serum plasma proteins, the primary constituent is
HSA, with a lesser amount of AGP and an even smaller amount
of lipoproteins.4 The plasma concentration of HSA is around
600µM for this 66 kDa globular protein, which consists of three,
very similar 3-D structural domains, designated as I, II, and
III. Each domain possesses two subdomains, A and B. High-
resolution X-ray structures have identified eight subdomains:
eight fatty acid binding sites within all six A and B subdo-
mains.5,6 By contrast, drug-like compounds have been suggested
to bind at either of two high affinity sites. Site-I in the IIA
subdomain is commonly referred to as the warfarin site.5,7,8Site-
II, in subdomain IIIA, is called the diazepam site.5 Sites I and
II are quite similar in size and shape, possessing elongated
hydrophobic pockets with polar residues at the mouth and side
walls, close to the cavity entrance. The pockets are lined with
hydrophobic residues: Phe, Trp, Ile, Ala, and Leu. At the
entrance of Site I, Arg, His, and Lys can undergo electrostatic
and/or H-bonding interactions with negatively charged groups
or H-acceptors on drug-like compounds. Site-I binds acidic and
neutral compounds. Arg and Tyr at the cavity entrance of Site
II bind entities that are neutral or basic at pH 7.4.9 In light of
that fact that the specific binding mode of binding to HSA has
been verified for a limited number of drugs, it is certain that
additional binding sites for molecule compounds to HSA do
exist. Paclitaxel, a potent antitumor agent, has been shown to
have more than six HSA binding sites, with the initial site having
high affinity binding (i.e.,Kd) 2 × 10-6 M-1).10 Two general
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anesthetics, propofol and halothane, are known to bind to several
fatty acid sites.11 A quantitative assessment of the binding modes
(subdomains involved, number of sites, types of interactions)
for the great majority of HSA bound compounds is lacking.
Nonetheless, the need to develop in silico models to predict
%PB for early-stage drug candidate selection remains important.

In recent years, published QSAR models for HSA binding
were based primarily on small datasets, usually less than 350
compounds. In this study we examined over 1000 drug and drug-
like compounds with reported %PB values encountered with
plasma proteins. To our knowledge, the model reported here is
based on the largest human serum protein binding data set taken
from the literature. In this work we attempt not only to provide
prediction for new chemical entities (NCEs) but also to elucidate
the important physicochemical properties, structural attributes,
and substituent groups that contribute to %PB. Four different
types of quantitative-structure-activity relationship (QSAR)
models were developed in this present investigation to assess
the commonality of descriptors that might exist among these
models and to assess their robustness for NCE prediction
(validation set). In addition, to compare descriptors found here
with reported results from several other studies.

Materials and Methods

Sources of Compounds and Their Attributes.Data on the
percent fraction of compounds bound to plasma proteins (%PB)
came from a variety of sources.12-17 A clustering technique was
used to sort compounds into small groups with similar structures.
If the reported experimental value for a compound was substantially
different from the values of other compounds in the same cluster,
values were checked for the presence of a data error. Common
data errors included: reported fraction unbound instead of fraction
bound, value not measured in human plasma, or the value reported
was for the primary metabolite. Of the compounds selected, 418
(41%) had two or more reported values. If two or more reported
values for the same compound differed by 30% or more, the
compound was excluded; otherwise they were averaged. Several
other classes of compounds excluded were proteins, organometal-
lics, and those reported to show a dose or time dependency. The
number of unacceptable compounds found in various data sources
was 103 including 68 duplicates. Twelve compounds selected for
the 1008 dataset had no quantitative value for %PB. These were
reported as negligible, poor, or high %PB and were assigned %PB
values of 2, 25, and 80%, respectively. Twenty-two compounds
with fuzzy assignments were found among the high binders. Those
reported with %PB> 90% and> 99.5 were assigned a %PB of
95% and 100%, respectively.

All chemical structures used in molecular descriptor computations
were in the neutral form except 25 compounds with a permanent
positive charge (e.g., quaternary amines). Table 1 gives important
compound attributes for the 1008 drug dataset. Approximately 97%
of drug compounds had one or more ring structures with an average
of approximately three rings per structure; 54% had fused rings,
and 26% had one or more heteroaromatic rings. On average each
compound had nine rotatable bonds. As shown in Table 1,
approximately one-quarter of the drugs have a carboxylic acid
group, 26% contain a halogen atom, 61% contained at least one
amine, 35% have an amide group, and 39% have a hydroxyl group.
As expected, the molecular weight, number of hydrogen bond
donors and acceptors, and total polar surface area of these
compounds are consistent with drug-like compounds. An ap-
proximate gauge of the chemical diversity of 1008 compounds
(results not given) is revealed by a principal component analysis
based on 115 structure descriptors (molecular connectivity and
atom-type E-state indices). The first two PCA components explain
only 28% of the variance, and the first nine components explain
59% of variance, indicating a high level of chemical diversity
among these compounds.

Molecular Descriptor Selection.An initial set of 628 topological
structure descriptors were computed by ChemSilico software18 and
reduced to a set of 180, using the criterion that at least 3% of the
descriptor values must have nonzero variance (nonzero in most cases
for the 1008 compounds). The descriptors include molecular
connectivity chi indices, E-State indices of the atom-, bond-, and
group-type as well as atom- and group-type hydrogen E-State
descriptors, kappa shape indices, and several binary indicators (e.g.,
presence of aromatic ring, types of amides, acids). Counts of atoms,
groups, or fragments were not included for modeling. Predicted
LogP was calculated using CSLogP18 and included as a bulk
property descriptor, resulting in 181 total descriptors available in
the initial set. This initial set of 181 descriptors was further reduced
by the various selection routines implemented in conjunction with
the four modeling algorithms investigated in this study. The
approach employed in this investigation for encoding molecular
structure in topological descriptors is referred to as the structure-
information representation whose significance for modeling biologi-
cally important properties has been discussed.19

Selection Process for Train and Validation Compound Sets.
To select a training set and a validation set of compounds, Ward’s
hierarchical clustering was performed using MDL QSAR software.20

The set of descriptors used for clustering consisted of 115
topological structure descriptors containing only molecular con-
nectivity chi indices and atom-type E-State descriptors. Ten clusters
were produced. The average cluster size was 112 compounds,
excluding the two smallest clusters, each containing two com-
pounds. The validation set (NCEs) was created by random selection
of 20% of the compounds from each cluster to yield 200
compounds. The four compounds in the two smallest clusters were
assigned to the training set. The compounds in the external
validation set were used to determine the predictive capabilities of
the four QSAR models developed in this study but did not contribute
to any phase of model development.

Model Development

QSAR models were developed using four different modeling
algorithms: multiple linear regression (MLR), artificial neural
networks (ANN), k-nearest neighbors (kNN), and support vector
machine (SVM). Each modeling procedure started with the same
initial set of 181 descriptors (180 topological structure descrip-
tors together with predicted logP) as independent variables, 808
compounds for train/test set, and 200 for external validation.

MLR Model Development.MLR analysis was accomplished
with JMP v5 (SAS Institute Inc., Cary, NC) on the 808
compound train set. In the MLR modeling process, a step-

Table 1. Compound Attributes in Train and Validation Sets

structure attribute averagea numberb percent

Ringc 2.84 978 97.0%
N-heteroaromatic ringd 0.26 263 26.1%
nonheteroaromatic ringd 0.54 549 54.5%
nonaromatic ringd 0.16 166 16.5%
fused ring system 0.54 543 53.9%
rotatable bonds 9.2 1008 100%
-CO2H 0.26 261 25.9%
-NO2 0.03 33 3.3%
aminese 1.7 431 42.8
amidesf 0.67 391 38.8%
-OH 0.75 358 35.5%
halogensg 0.41 258 25.6%
average NumHBa 6.63 1007 99.9%
average NumHBd 2.12 847 84.0%
average MWh 362.4 1008 100%
TPSAi 96.4 1008 100%

a Average value for attribute in dataset.b Number of compounds with
specified attribute.c Compound contains a ring structure.d Type of ring
structure.e Primary, secondary, and tertiary amines.f Amides and sulfonyl
amides.g All Halogens F, Cl, Br, and I.h MW ) Molecular weight.i TPSA
) total static polar surface area of O, N, P, and S along with associated
hydrogen atoms.
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forward selection process was conducted until ther2 reached a
semi-plateau where changes inr2 were less than 0.2% upon
adding another variable, under the constraint that the number
of descriptors was always less thanxN + 5 (N ) number of
compounds). Removal of potentially redundant descriptors was
accomplished using the criterion that the inter-correlationr2 for
all pairwise variables be less 0.90. The final model contained
30 descriptors for the bestr2 value. Ranking of the final set of
30 descriptors, to indicate relative importance, was determined
by a leave-one-out approach and ranked by the sum of the
residues squared (RSS) in the absence of the descriptor. A 100-
fold randomization of %PB values was performed withr2

computed for each case, yielding an averager2 less than 0.03
for the MLR model. The results of this randomization process
indicate that the model is different from an equation based on
random numbers, suggesting that significant information is
contained in the model.

ANN Model Development.For the Artificial Neural Network
(ANN) analysis, the 808 compound train/test set, designated
the principal set, was randomly split into 90% for training and
10% as a (internal) test set. This process was repeated 10 times
to produce 10 mutually exclusive train/test sets (or folds) of
the data. The selection was carried out such that each compound
in the principal set appeared in a test set only once and was
used for training nine times. A standard back-propagation neural
network was used for this study. The network contained no more
than nine hidden neurons and utilized the backward elimination
approach21,22 for descriptor selection which has been adapted
from traditional linear regression methods.

Each training set was processed separately with the neural
network algorithm, using the test set to prevent over fitting.
Each model was applied to the corresponding (internal) test set
to calculateq2, which is ther2 value for all instances in which
the data was withheld from the modeling process. This multiple
selection process leads to a set of 10 models with predicted
values which were averaged, called an ensemble model. The
average value of 10 neural nets, the ensemble model, gives the
predicted %PB value of a compound. Ranking of descriptors
with respect to their importance in the model was determined
as the ratio of the difference in RSS (sum of squares of residuals)
in the presence and absence of the variable, divided by the
smallest difference (the least important variable in the train-
test set), using an average RSS values from all ten ANN models.
Using this approach, the variables judged to be noncontributory
are pruned during the 10-fold cross-validation in a backward
stepwise manner until ther2 declined two consecutive times by
more than 0.02r2 units. The last model, just prior to this drop
in r2, was selected as one with the optimal descriptor subset.

As a general rule, we considered only models with an absolute
value ofq2 ) 0.50 as the minimum cut off value forq2 (with
corresponding higher values forr2). Typically, we observed that
r2 values were greater than the correspondingq2 by 0.1 to 0.3
units. By this backward elimination process the initial starting
set of 181 descriptors was reduced to 33 in this ANN analysis.
The relative importance of each eliminated variable is based
on its contribution across the entire train/cross-validation sets
by calculation ofr2.

Since the trainingr2 is used to select the variables, it does
not provide a reliable assessment of the predictive accuracy of
the overall algorithm. This task is reserved for the independent
external validation set of 200 compounds, which was not used
to generate an algorithm or select an optimum subset of inputs
during the backward elimination process.

Model Developed by kNN-QSAR.The kNN QSAR method23

employs the kNN pattern recognition principle24 and a variable
selection procedure. Briefly, a fixed size subset of descriptors
is selected randomly in the beginning of the calculations. The
model is built using this random descriptor selection with leave-
one-out (LOO) cross-validation, where each compound is
eliminated from the training set and its biological activity is
predicted as the average activity of thek most similar molecules
(k ) 1-5). The similarity is characterized by the Euclidean
distance between compounds in multidimensional descriptor
space. A method of simulated annealing with the Metropolis-
like acceptance criterion23 is used to sample the entire descriptor
space to converge on the subset of the same size which affords
the highest value of LOOr2 (q2). The descriptor subsets of
different sizes are optimized using this procedure to arrive at a
variety of models with acceptableq2 greater than certain
threshold (0.6 was selected as the default threshold). The training
set models with acceptableq2 are then validated on external
test sets to select the 10 predictive models, the ensemble model,
as discussed above. Further details of the kNN method
implementation, including the description of the simulated
annealing procedure used for stochastic sampling of the descrip-
tor space, are given elsewhere.23

The original kNN method23 was enhanced by using weighted
molecular similarity. In the original method, the activity of each
compound was predicted as the algebraic average activity of
its k-nearest-neighbor compounds in the training set. In general,
however, the Euclidean distances in the descriptor space between
a compound and each of itsk nearest neighbors are not the same.
Thus, the neighbor with the smaller distance from a compound
is given a higher weight, with exponential dependence on
distance, in calculating the predicted activity as follows:

Heredi is the Euclidean distance between the compound and
its k nearest neighbors,k is the number of nearest neighbors,wi

is the weight for every individual nearest neighbor, andyi is
the actual activity value forith nearest neighbor. In summary,
the kNN algorithm generates both an optimumk value and an
optimal subset of descriptors, which afford a QSAR model with
the highest value ofq2. This modified algorithm was also applied
recently to the kNN QSAR modeling of anticonvulsant agents.25

Model Development by SVM.The support Vector Machine
technique (SVM) was developed by Vapnik26 as a general data
modeling methodology where both the training set error and
the model complexity are incorporated into a special loss
function that is minimized during model development. The
methodology allows one to regulate the importance of the
training set error versus the model complexity to develop the
optimum model that best predicts a test set. In later develop-
ments, SVM was extended to afford the development of SVM
regression models for datasets with noninteger activities and
used for QSAR development.

We have implemented the SVM method for QSAR modeling
to construct a 10 member ensemble model. Each SVM member
was developed as follows: letm be the number of points
representing the training set compounds with known biological
activity in ann-dimensional descriptor space. The problem is

wi )
exp(-di)

∑
i)0

i)k

exp(-di)

y ) ∑ wiyi

QSAR Modeling of Human Serum Protein Binding Journal of Medicinal Chemistry, 2006, Vol. 49, No. 247171



to generate a hyper-surface in the descriptor-activity (n+1)
dimensional space that relates descriptor values to the biological
activities. Thus, the biological activity of any compound can
be predicted from its descriptors by placing the point corre-
sponding to this compound on this hyper-surface.

Given a training set of instance-label pairs (xi, yi), i ) 1, ....,
mwherexi, ε, Rn are the descriptors that describe each compound
andyi is the biological activity (e.g., %PB) of each compound,
the sought correlation between structure and activity can be
represented asyi ) f(xi). For simplicity, we will define f(xi) to
be a linear function of the form

whereω is the coefficient vector of the linear function andb is
the bias. One major goal of any regression algorithm is to
minimize the errors between the predicted and the actual values
as defined byêi in the following equation:

As a means of regulating generalization of the algorithm,
SVM utilizes the following constraint to solve the optimization
problem: with the constraint:

whereas the training vectorsxi are mapped into a higher
dimensional space by a kernel functionΦ. Then the SVM
algorithm finds a linear correlation between the actual activity
and this higher dimensional spaceΦ(xi). The quantity C (> 0)
is the penalty parameter of the error term that controls the weight
between the two terms in the SVM optimization problem.
During optimization, the relative weights are assigned to each
descriptor whereby a large number of the descriptors are given
a weight of zero to minimize the value of the loss function.
However, a small number of descriptors are given a nonzero
weight and the absolute value of that weight implies the relative
significance that descriptor has on activity prediction.

In many cases the binding activities may contain small errors
or the kernel function may not be capable of perfectly represent-
ing the training compounds in a simplified manner. As a means
of inhibiting the algorithm from producing an overly compli-
cated training set correlation that would not accurately predict
a test set, we included a slack variable,ε. This slack variable is
a threshold of prediction error for any compound’s activity
before the algorithm is penalized for a poor prediction. Beyond
the boundaryε the algorithm is penalized by the value ofêi -
ε. When combining the SVM optimization problem defined with
a linear kernel, the following SVM loss function is obtained:

The nature of SVMs requires one to specify a priori the values
of C andε since it is not known beforehand which values may
work best for the dataset; thus, a parameter search must be
performed. The goal is to identify good values ofC andε such
that the model can accurately predict unknown data (i.e., testing
data). In most circumstances, the highest training accuracy does
not yield the best accuracy on a test set. Therefore, the optimum

C andε values are commonly selected based on the values that
give the best test set results.

In many cases we use a “grid-search” onC andε to identify
the best parameters. There are several advanced methods which
can save computational cost by estimating the best parameters.
There are two reasons why we preferred a simple grid-search
approach. First, unlike alternative methods which use ap-
proximations or heuristics, a grid-search allows for an exhaustive
parameter search and does not have a convergence problem due
to local minima. Second, the computational time to find good
parameters by a grid-search is not much longer than the time
required by advanced methods since there are only two
optimization parameters. Furthermore, the grid-search can be
easily parallelized because each parameter is independent. Many
of the advanced methods for parameter estimation are iterative
processes, e.g. walking along a path, which is difficult for
parallelization.

For large datasets, a complete grid-search may be overly time-
consuming; therefore, we commonly use first a coarse grid on
a subset of available data. A user may randomly choose a subset
of the dataset, conduct a grid-search using those compounds,
and then do a fine-tuned grid-search on the complete dataset
over the parameter value ranges that exhibited the best results.

Results

Statistical Information on the QSAR Models.Four different
QSAR algorithms were employed in this investigation. MLR
was used as a baseline regression method along with three
machine learning algorithm approaches, ANN, kNN, and SVM,
to investigate their performance in model development based
on fitting a training set followed by predictions on an external
validation set. Statistical results from prediction of the training
set (808 compounds) and the validation set (200 compounds)
by each of the four models are summarized in Table 2. For the
training set, the ANN model gave the lowest mean absolute
error (MAE) equal to 7.6 using 33 descriptors, followed by the
kNN model with MAE ) 15.6 using 29 descriptors. Surpris-
ingly, the MLR and SVM models gave essentially the same
statistical outcomes: MAE)16.2 and 16.6, respectively. The
SVM ensemble model employed 61 variables. Another char-
acteristic of models is the ratio of observations to input variables
(i.e., structure descriptors and logP). For three of the models
that ratio is 24 (ANN) and 27 (kNN and MLR). However, the
SVM model required nearly twice as many descriptors as the
other models, leading-to-a ratio of 13. Generally a ratio greater
than 10 is considered reasonable for QSAR models.

The most important criteria of how robust a QSAR model
is, are differences in the predicted versus experimental values
coming from the use of a compound validation set. Of the four
QSAR models, ANN and kNN performed best with MAE)

f(xi) ) 〈ωi, xi〉 + b

|yi - (〈ωi, xi〉) + b| ) êi

min
ω,b,ê

? ωTω

2
+ C ∑

i)1

m

êi

|yi - (ωT Φ(xi) + b| ) êi

minloss) ||ω||
2

+ C
i)1
m [0 if êi < ε

êi - ε if êi > ε ]

Table 2. Results of Four QSAR Models for Training and Validation
Datasets

model number R2 MAEa RMSEb descriptors

Training Set Statistics
ANN 808 0.90 7.6 10.8 33
kNN 808 0.62 15.6 20.9 29
MLR 808 0.61 16.2 21.0 30
SVM 808 0.62 16.2 21.7 61

Validation Set Statistics
ANN 200 0.70 14.1 18.6 33
kNN 200 0.59 16.7 21.8 29
MLR 200 0.59 17.2 21.8 30
SVM 200 0.59 18.3 23.3 61

a MAE, mean absolute error,) 1/N × ∑ (|%PBexp - %PBpred|) where
N ) number of compounds.b RMSE is root-mean-square error.
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14.1 and 16.7, respectively. The MLR and SVM models were
quite similar in their predictive ability, differing by only 6% in
their MAE values; MAE) 17.2 and 18.3, respectively (See
Table 2). Considerable differences did exist in the predictive
capabilities among the models as revealed in the distribution
of predictions for the 200 compound validation set, shown in
Figure 1. These differences may be highlighted by subdividing
the validation set into three subsets based on the range of %PB
values and then examining the prediction quality within each
subset. The lower range is defined as %PB< 15% (14% of the
validation set), a midrange from 15 to 85% (48% of the
validation set), and an upper range of compounds with %PB
>85% (38% of the validation set). The MAE values for the
ANN model were 14, 17, and 10 in these three %PB ranges.
The corresponding values for the kNN model are 15, 19, and
14. In the bottom range, the MLR and SVM models yielded
MAE ) 25 and 16, respectively. In the mid and top ranges the
MAE values for MLR and SVM were 17 and 19, and 14 and
19, respectively. It is evident the models are not balanced in
their MAE values across these three subsets. The ANN model
does better at the high %PB range than any of the other QSAR
models and somewhat better in the low to middle ranges. The
same unbalanced predictions also occur when these subset
ranges are expanded or contracted by 15% in their PB values.

Table 3 summarizes results from all four models for the
external validation set: experimental PBexp, predicted %PB
values, absolute error (AE), and the calculated logP values
(CSLogP) for each of the 200 compounds. All models agreed
within less than 15% in their predicted %PB values for only
34% of the validation compounds. Best agreement, less 15%
difference in their predicted %PB values, was found among the
ANN and kNN models on 158 compounds in 200 member
validation set. However, it is apparent from Table 3 the spread
in AE values from the four models for a given compound can
be small or large; e.g., good predictive agreement among the

models for arebekacin and poor agreement for acenocoumarol.
Furthermore, the range in AE values, 0% to 72%, prompted us
to examine the worst predicted compounds for each model. We
computedr2 and MAE for all four models upon removal of 5%
of the compounds with largest AE values, 10 for each model.
On average,r2 increased substantially (by 17%) and MAE
declined significantly (by 11%) for the models when 5% of the
data with the largest residuals was removed. Examination of
these compounds (where AE ranged from 40% to 72% among
the models) revealed that three compounds, ambroxol, nirida-
zole, and desbrisoquine, were common to the ANN, MLR, and
kNN models. These three compounds plus tilidine, pravastatin,
cilazapril, and zonisamide were common to the ANN and MLR
models. For the SVM model, only two compounds, nafarelin
and buprenorphine, were found in common only with the kNN
model. These model dependent outliers have very little structural
similarity; so unless the reported %PB values are in error, the
models could not predict binding values for these compounds
within 40% of their experimental ones.

Important Structure Descriptors. A summary of the
descriptors ranked as the top 20 in importance (19 topological
indices plus logP) together with their frequency of occurrence
in the train/test dataset are given in Table 4 for all four QSAR
models. The mean trends in descriptor values with %PB are
also given for two models, ANN and MLR. Here frequency of
occurrence is defined as the percentage of compounds for which
the descriptor is present, nonzero. A global descriptor is defined
as one for which the frequency> 90%. Atom-type E-state
descriptors, signified by a capital S, and bond-type indices,
signified by e, are the predominant descriptors in all models.
These two descriptor classes as a percent of the total descriptors
found in a model ranged from 95% in the ANN model to 50%
in the kNN model with the remaining indices being molecular
connectivity descriptors. LogP, the most important descriptor
in all models, had a wide range of values from-3 to 7 with

Figure 1. QSAR modeling results for a 200 compound validate set for four models; ANN) artificial neural net, kNN) k-nearest neighbor, MLR
) multiple linear regression, SVM) support vector machine. Dotted diagonals are 30% off-sets from experimental PB values. Gray boxes represent
predictions outside the( 30% range.
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Table 3. Results for QSAR Models on 200 Validation Compounds for Percent Serum Protein Binding (%PB)

compound CSLogPa PBexpb PBpredc (ANN) AEd PBpred (kNN) AE PBpred (MLR) AE PBpred (SVM) AE

17-â-estradiol 3.33 98 95 3 93 5 83 15 94 4
17-hydroxyprogesterone 2.84 85 90 5 88 3 75 10 93 8
acenocoumarol 1.71 98 97 1 72 26 87 11 85 13
albendazole sulfoxide 1.76 70 89 19 62 8 66 4 65 5
alfadolone 1.86 30 63 33 73 43 57 27 58 28
amantadine 2.10 66 25 41 44 22 29 37 35 31
ambroxol 0.05 90 28 62 27 63 22 68 44 46
amdinocillin 1.10 14 71 57 41 27 48 34 0 14
amisulpride 1.16 16 15 1 46 30 40 24 32 16
amithiozone 1.24 95 53 42 50 45 53 42 56 39
amitriptyline 3.93 95 85 10 92 3 83 12 86 9
amoxicillin -1.49 19 15 4 21 2 34 15 25 6
aprobarbital 1.16 62 44 18 47 15 48 14 43 19
arbekacin -3.94 8 9 1 7 1 0 8 0 8
azithromycin 3.77 35 39 4 55 20 53 18 43 8
baclofen -0.68 30 42 12 71 41 52 22 35 5
barbital 0.75 10 36 26 29 19 43 33 13 3
bleomycin 4.80 10 30 20 30 20 63 53 16 6
bopindolol 2.57 65 93 28 71 6 67 2 77 12
brotizolam 2.90 90 93 3 77 13 100 10 95 5
bunazosin 2.18 97 91 6 78 19 77 20 100 3
buprenorphine 4.20 96 59 37 51 45 87 9 46 50
calcifediol 4.16 80 96 16 92 12 80 0 100 20
capecitabine 1.47 30 56 26 54 24 51 21 35 5
carbenoxolone 3.89 100 87 13 93 7 100 0 53 47
carbidopa -2.33 36 10 26 9 27 28 8 25 11
carbimazole 0.15 7 10 3 15 8 37 30 49 42
cefdinir -1.87 65 47 18 41 24 17 48 32 33
cefoperazone 1.08 91 62 29 80 11 78 13 66 25
cefoxitin 0.42 72 45 27 57 15 44 28 34 38
cefprozil -0.89 40 35 5 24 16 49 9 34 6
cefsulodin 0.11 23 39 16 29 6 17 6 0 23
ceftizoxime -0.58 29 44 15 48 19 45 16 65 36
cetirizine 2.60 93 60 33 97 4 80 13 80 13
cevimeline 1.52 15 26 11 41 26 25 10 24 9
cilazapril 0.65 25 73 48 44 19 71 46 15 10
cilostazol 3.30 97 99 2 88 9 93 4 100 3
cladribine 0.16 20 13 7 13 7 34 14 12 8
clindamycin 2.59 94 71 23 71 23 55 39 32 62
clomipramine 5.25 97 100 3 96 1 96 1 56 41
clonidine 1.32 25 35 10 64 39 50 25 36 11
clorazepic acid 3.26 91 90 1 97 6 98 7 100 9
cortisone acetate 2.37 95 85 10 78 17 66 29 89 6
cytarabine -2.42 14 0 14 7 7 4 10 0 14
dacarbazine -0.20 5 27 22 36 31 21 16 0 5
debrisoquine 0.14 85 45 40 27 58 42 43 57 28
deferiprone -0.74 33 4 29 15 18 41 8 11 22
deflazacort 2.71 40 75 35 72 32 76 36 63 23
demeclocycline -0.28 54 53 1 58 4 60 6 49 5
dicamba 2.41 99 79 20 80 19 79 20 56 43
didanosine -1.26 3 25 22 10 7 25 22 51 48
diflunisal 3.63 99 90 9 94 5 83 16 77 22
dihydroergotamine 2.91 93 85 8 94 1 95 2 100 7
diltiazem 2.58 81 96 15 95 14 72 9 83 2
doxazosin 1.80 95 95 0 82 13 97 2 51 44
doxepin 2.79 80 75 5 88 8 71 9 39 41
encainide 3.76 70 91 21 89 19 82 12 94 24
etidocaine 2.82 94 89 5 63 31 67 27 79 15
etilefrin -0.58 25 51 26 19 6 31 6 14 11
everolimus 3.32 74 90 16 66 8 100 26 78 4
fendiline 4.22 95 86 9 96 1 100 5 100 5
fenoprofen 3.05 99 95 4 98 1 94 5 100 1
fexofenadine 4.25 65 90 25 95 30 100 35 94 29
flunitrazepam 2.31 79 88 9 91 12 75 4 80 1
flurbiprofen 3.04 99 96 3 98 1 91 8 47 52
flutamide 2.91 90 73 17 84 6 82 8 86 4
fosfomycin -1.11 2 20 18 7 5 29 27 24 22
fosinoprilat 2.25 98 84 14 79 19 76 22 64 34
galantamine 1.29 18 21 3 64 46 47 29 42 24
gemcitabine -0.79 2 8 6 12 10 24 22 52 50
gentamicin -3.64 20 24 4 8 12 0 20 0 20
gliclazide 1.02 91 86 5 81 10 71 20 64 27
glufosinate ammonium -2.74 1 2 1 6 5 19 18 0 1
guanethidine -0.38 5 3 2 15 10 1 4 0 5
hexobarbital 1.74 48 51 3 54 6 53 5 48 0
hydromorphone 1.59 7 21 14 24 17 48 41 44 37
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Table 3 (Continued)

compound CSLogPa PBexpb PBpredc (ANN) AEd PBpred (kNN) AE PBpred (MLR) AE PBpred (SVM) AE

hydroxychloroquine 1.77 50 67 17 75 25 64 14 68 18
ibomal 1.54 34 51 17 47 13 46 12 14 20
idebenone 2.69 90 89 1 86 4 71 19 71 19
imipramine 4.70 88 95 7 95 7 86 2 92 4
indoprofen 2.72 99 96 3 97 2 93 6 79 20
isoniazid -0.72 3 17 14 13 10 28 25 0 3
isosorbide mononitrate -0.29 3 16 13 14 11 23 20 3 0
isradipine 3.63 97 90 7 92 5 85 12 55 42
itraconazole 3.93 100 90 10 75 25 100 0 100 0
lamivudine -1.48 36 8 28 6 30 18 18 10 26
letrozole 3.31 60 73 13 63 3 59 1 42 18
levocabastine 3.01 55 89 34 90 35 85 30 79 24
levofloxacin -0.40 27 25 2 34 7 52 25 37 10
levorphanol 3.15 40 63 23 90 50 64 24 47 7
liothyronine 1.36 98 92 6 82 16 71 27 73 25
lisinopril -2.47 10 23 13 23 13 45 35 0 10
lomefloxacin -0.47 12 31 19 24 12 47 35 22 10
lopinavir 5.35 99 87 12 97 2 100 1 100 1
lysergide 2.32 90 74 16 62 28 71 19 65 25
medroxyprogesterone 3.14 94 92 2 91 3 77 17 83 11
mefruside 1.56 65 79 14 51 14 69 4 32 33
meloxicam 2.03 100 97 3 75 25 84 16 71 29
melperone 3.57 50 60 10 75 25 67 17 78 28
meprobamate 0.76 20 23 3 38 18 21 1 0 20
meptazinol 2.83 27 37 10 58 31 53 26 50 23
methacycline -0.15 84 60 24 61 23 60 24 51 33
methadone 3.21 84 88 4 85 1 72 12 100 16
methohexital 1.62 77 49 28 54 23 64 13 45 32
metildigoxin 1.77 15 37 22 38 23 69 54 44 29
metronidazole -0.23 10 16 6 34 24 27 17 7 3
mexiletine 2.03 65 50 15 51 14 60 5 44 21
mibefradil 5.08 99 90 9 91 8 96 3 100 1
midazolam 2.85 96 91 5 82 14 78 18 89 7
montelukrast 5.28 99 98 1 83 16 100 1 100 1
mupirocin 2.88 96 91 5 88 8 71 25 75 21
nafarelin 5.74 80 50 30 31 49 86 6 23 57
naloxone 1.77 45 34 11 24 21 60 15 69 24
nefazodone 3.12 99 98 1 91 8 86 13 100 1
netilmicin -3.75 10 23 13 7 3 0 10 0 10
nicardipine 4.59 98 98 0 94 4 91 7 64 34
nicorandil -0.69 25 25 0 21 4 27 2 6 19
niridazole 0.56 85 38 47 17 68 39 46 39 46
nitrofurantoin -0.21 63 49 14 21 42 33 30 32 31
nitroglycerin 1.18 60 55 5 55 5 43 17 27 33
nizatidine 0.08 29 3 26 18 11 40 11 0 29
norethisterone 2.75 80 90 10 86 6 75 5 90 10
norfloxacin -0.15 15 39 24 42 27 52 37 0 15
octreotide -0.51 65 37 28 74 9 57 8 27 38
olanzapine 3.14 93 84 9 90 3 87 6 93 0
ornidazole 0.13 15 22 7 36 21 35 20 20 5
oxitropium 3.95 7 7 0 20 13 25 18 26 19
paclitaxel 2.46 65 92 27 97 32 94 29 81 16
paramethadione 0.67 0 16 16 18 18 35 35 30 30
paroxetine 2.33 95 99 4 92 3 59 36 69 26
hepe 2.82 100 77 23 76 24 94 6 38 62
penicillin 13 2.07 66 70 4 65 1 58 8 49 17
penicillin 20 2.54 94 78 16 84 10 63 31 69 25
penicillin 24 3.12 94 92 2 94 0 88 6 100 6
penicillin 27 -0.05 60 51 9 35 25 48 12 94 34
penicillin 28 0.28 55 53 2 52 3 55 0 44 11
penicillin 30 -0.04 26 40 14 49 23 48 22 42 16
penicillin 31 -1.51 12 18 6 22 10 28 16 8 4
penicillin 38 2.50 62 82 20 79 17 76 14 61 1
penicillin 40 3.09 83 91 8 90 7 84 1 77 6
penicillin 45 2.64 65 87 22 80 15 74 9 63 2
penicillin 46 1.14 60 73 13 75 15 60 0 54 6
penicillin 48 2.21 82 79 3 77 5 72 10 49 33
penicillin 57 2.80 96 89 7 94 2 82 14 81 15
penicillin 60 1.50 86 68 18 78 8 62 24 59 27
penicillin 62 2.28 80 84 4 80 0 69 11 64 16
penicillin 70 3.02 97 88 9 90 7 88 9 48 49
penicillin 74 2.10 90 74 16 77 13 71 19 77 13
pentachlorophenol 5.08 99 98 1 80 19 100 1 92 7
perphenazine 3.65 92 99 7 92 0 91 1 45 47
phenformin 0.79 16 38 22 28 12 39 23 8 8
phentolamine -1.22 54 52 2 57 3 41 13 71 17
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14%, 79%, and 9% of compounds in the range from-3 to 0,
0 to 5, and 5 to 7, respectively. Seventeen descriptors (in bold
in Table 4) were found in two or more models. Seven descriptors
in the ANN models were found in both the MLR and SVM
models, five in common with the kNN, and three or more
identical indices were common among the kNN or the MLR or
SVM models. Two descriptors in the top 10 that are common
to all models are logP and SallNp (sum of E-states for
permanently charged nitrogens; see Tables 5-8). SCarom and
e1C3N3 were next in commonality, found in three of the four
models. As indicated in Tables 7 and 8, SCarom is the sum of
E-state values of all aromatic carbon types; e1C3N3 is the sum
of the bond E-states for a sp3 carbon (>CH-) single-bonded to
a tertiary nitrogen atom (>N-) where the letter, e, signifies a
bond-type.

Of some additional interest is the frequency of the descriptors.
As seen by the frequency and ranking values in Table 4, the
important ranked topological descriptors are independent of their
frequency percentages. The rank and frequency values are
uncorrelated:r2 ) 0.03, averaged over the four models. Further-

more, no model has a majority of global descriptors (a frequency
>90%). ANN, kNN, MLR, and SVM had two, eight, four, and
four global descriptors, respectively. The average frequency for
nonglobal descriptors is 36%, about one in every three
compounds; however, 40% of these nonglobal indices have an
average occupancy of 14.6% or about one in every seven
compounds. This information indicates, in the optimization
process, models are selecting descriptors which represent very
specific structural attributes.

Two models, ANN and MLR, were amenable to a mean trend
analysis. A descriptor trend points out the relationship between
the change in descriptor value and the resulting change in
calculated protein binding value. In the procedure for determin-
ing a descriptor trend, the descriptor value is incremented 100%
(up/down 50%) of its range in 10 evenly spaced intervals, while
all other indices are held constant. The resulting set of computed
property values is plotted against the changed descriptor values.
These plots were examined for trends. In general, some plots
exhibit increasing or decreasing relationships which are nearly
but not exactly linear. Others indicate a nonlinear relation with

Table 3 (Continued)

compound CSLogPa PBexpb PBpredc (ANN) AEd PBpred (kNN) AE PBpred (MLR) AE PBpred (SVM) AE

pirenzepine 0.60 10 43 33 66 56 39 29 52 42
piroxicam 1.28 99 91 8 68 31 79 20 84 15
pravastatin 4.41 48 97 49 93 45 97 49 64 16
praziquantel 1.19 83 78 5 88 5 62 21 65 18
prednisolone 1.46 88 72 16 75 13 61 27 72 16
prenylamine 4.29 97 86 11 96 1 100 3 100 3
probenecid 2.28 90 86 4 94 4 88 2 100 10
procainamide 1.10 17 11 6 49 32 37 20 19 2
propoxyphene 3.75 75 89 14 90 15 78 3 94 19
raloxifene 4.50 97 91 6 92 5 100 3 100 3
reproterol -2.10 50 51 1 7 43 11 39 21 29
ritonavir 4.74 100 92 8 89 11 100 0 100 0
ropinirole 2.57 40 69 29 51 11 59 19 62 22
ropivacaine 2.39 94 88 6 48 46 59 35 63 31
sertraline 3.35 99 89 10 93 6 96 3 100 1
sodium cromoglicate 1.73 65 71 6 69 4 100 35 70 5
spironolactone 2.39 98 77 21 68 30 74 24 100 2
sulfamethoxazole 0.56 63 90 27 85 22 70 7 68 5
sulfamethoxypyridazine 0.77 75 90 15 84 9 89 14 87 12
sulindac 3.90 93 99 6 97 4 100 7 100 7
sulpiride 0.66 25 10 15 30 5 44 19 56 31
tacrine 2.01 55 80 25 76 21 68 13 70 15
tacrolimus 3.59 87 88 1 58 29 84 3 83 4
tebufelone 5.21 100 97 3 93 7 87 13 89 11
terazosin 2.09 91 89 2 75 16 78 13 86 5
terbutaline -0.67 21 38 17 32 11 26 5 37 16
tetrazepam 3.50 70 94 24 79 9 89 19 50 20
tianeptine 1.63 95 87 8 81 14 94 1 100 5
ticarcillin 0.64 58 52 6 69 11 49 9 51 7
tilidine 3.05 25 82 57 67 42 70 45 60 35
tiludronic acid -0.03 90 62 28 18 72 59 31 54 36
timolol 1.33 10 22 12 21 11 67 57 42 32
tocainide 0.83 13 33 20 34 21 54 41 32 19
tolamolol 1.30 91 61 30 48 43 49 42 47 44
tolbutamide 1.81 96 74 22 70 26 80 16 64 32
tolfenamic acid 4.81 100 98 2 99 1 100 0 92 8
topiramate 0.59 15 36 21 51 36 34 19 55 40
tramadol 2.20 13 30 17 43 30 44 31 0 13
troglitazone 2.53 100 95 5 93 7 75 25 100 0
tubocurarine 5.94 45 62 17 85 40 75 30 28 17
valacyclovir -0.52 18 18 0 10 8 22 4 0 18
valsartan 2.95 95 96 1 90 5 100 5 94 1
vigabatrin -2.85 0 1 1 6 6 17 17 0 0
vinorelbine 2.54 85 75 10 91 6 98 13 79 6
zanamivir -3.31 5 10 5 15 10 0 5 0 5
zolpidem 2.80 93 87 6 77 16 86 7 72 21
zonisamide 1.08 40 84 44 57 17 62 22 16 24
zopiclone 1.45 45 31 14 69 24 45 0 21 24

a Predicted logP (CSPredict v2.0.3.1, ref 18).b Experimental % protein binding.c Predicted % protein binding by the indicated model.d Absolute error
calculated as|predicted- experimental|
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a maximum or minimum; still others show a sigmoidal-like
relationship. An interesting result was found among the trends

associated with seven descriptors (logP, SallNp, Gmin, Ssp3N,
SHBint4, xch10, and eaC2N2a) common to both ANN and MLR

Table 4. Ranking of Top 20 Descriptors in QSAR Modelsa

a Grayed-out descriptors signify descriptors found in two or more models; Boxed-out descriptor indicate a homologous descriptor found in two or more
models.b Frequency (FQ) is the number of compounds in the 808 compound train/test sets with a nonzero value for the given descriptor.c A positive trend
indicates % protein binding will generally increase with an increase in the descriptor value. A negative trend indicates the inverse effect. Trends marked as
variable may have either a positive or negative effect on predicted %PB depending on the value of other descriptors. The ANN and MLR mean trends were
evaluated by holding all other descriptor values constant and varying the given descriptor value by 50% up and down to determine the directional change
in %PB.

Table 5. Definitions of Important Global Descriptors and Binary Indicators Including Connectivity Indicesa

index name information encoded

CSlogP predicted LogP (CSPredict v2.0.3.1 [18]) lipophilicity
TPSA total polar surface area topological surface area of hydrogen bonding atoms (Ertl method)
Gmin minimum atom level E-State value atom associated with a site of electrophilic attack
xp4 chi simple path 4 skeletal complexity and details of
xp10 chi simple path 10 arrangement of branching
xch6 chi simple chain 6 complexity of large and fused ring systems
xch10 chi simple chain 10 and degree of ring substitution
xv1 chi valence 1 molecular weight and volume

connectivity index for path of length 1 presence of heteroatoms
xvp8 chi valence path 8 skeletal complexity, branching, and heteroatoms
xvpc4 chi valence path-cluster 4 adjacency of branching
xvch6 chi valence chain 6 complexity of large and fused ring systems
xvch9 chi valence chain 9 and degree of ring substitution and
xvch10 chi valence chain 10 presence of heteroatoms
dx1 chi simple difference 1 branching independent of molecular size
dx2 chi simple difference 2
dxp4 chi simple difference path 4 branching independent of molecular size
dxp5 chi simple difference path 5 complexity of branching
dxv0 chi valence difference 0 branching independent of molecular size
dxv1 chi valence difference 1 presence of heteroatoms
dxv2 chi valence difference 2
dxvp6 chi valence difference path 6 branching independent of molecular size
dxvp7 chi valence difference path 7 complexity of branching
dxvp8 chi valence difference path 8 presence of heteroatoms
AromMol indicator variable for the presence of an aromatic group
SOAmide2 indicator variable for the presence of a secondary sulfonamide
NArom indicator variable for the presence of an aromatic nitrogen group

a Some specific information encoded by individual connectivity indices is listed after the forst three entries. In models of large diverse datasets, however,
the principle impact of the molecular connectivity indices is not expressed in the form of a specific independent contribution for each index but rather as
collectively encoded information useful in differentiating among the different types of skeletal scaffolds that are present in the training set.
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models. All seven indices exhibited identical positive (or
negative) trends in these two models: This finding may
underscore the importance of these descriptors. It is apparent
from the trends that hydrophilicity, aromaticity, presence of a
ring structure, and the presence and bonding state of amines
play important stereochemical roles in serum plasma protein
binding of the compounds.

Discussion

To provide a basis for relating many of the most-important
descriptors found in the four QSAR models to physicochemical
properties of the compounds in this study, Table 9 presents a
profile of ionization states. The percentage of compounds is
given for each of four groups: acid, base, neutral, zwitterionic,
and permanently charged compounds (e.g., quaternary nitrogen
atoms). Ionization state applies to pH 7.4 for the train/test and
validation datasets. Approximately 90% of the 808 members
in the train/test set are evenly represented by acids, bases, and
neutral entities. Approximately 7% of the remaining members

are zwitterions and 3% with a permanent positive charge. The
ANN descriptors clearly indicate the importance of ionizable

Table 6. Definitions of Important Atom-type and Hydrogen Atom-type
Descriptors in the Four Models

Table 7. Definitions of Important Bond-type Descriptors in the Four
Models

Table 8. Definitions of Important Group-type and Single-Atom
Descriptors in the Four Models
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and formally charged groups by including two descriptors for
carboxylic acids [SHCarOH1, SCarOH1], five for bases [Ssp3N
and Ssp3NH (N bonded only to sp3 carbons), SsNH2, and SsssN
(bonded to any type carbon), e1C3N3], and finally SallNp (a
permanent positive charge on nitrogen). The negative trend
found for SallNp in both ANN and MLR is consistent with the
general tendency for compounds with a formal positive charge
to have low protein binding. Tables 5-8 give a listing and
description of many of the most important descriptors in these
four QSAR models.

The kNN, MLR, and SVM models had no important
descriptors that represent carboxylic acid. However, a binary
indicator (SOAmide2) for the presence/absence of sulfonyl
secondary amide was included in the MLR and SVM models
where the amine may likely be partially or fully deprotonated
at pH 7.4, hence, acidic. For the SVM model, two indices for
carboxylic acids occur but they are not in the top 20 descriptors.
The ANN model had four amine descriptors (Ssp3N, e1C3N3,
Ssp3NH, SsNH2) in the top 20 ranked members reflecting the
importance, in a negative sense, of amines in protein binding
for this model. In contrast, there were only two or less amine
descriptors among the important members for kNN, MLR, or
SVM models; while, on the other hand, all of these three models
did include SallNp. Aromaticity is another important physico-
chemical property of these drugs; 81% of the 808 train/test
dataset contain one or more aromatic rings (Table 1). In all four
models, four or more aromatic descriptors were found as being
important either as atom or bond-type E-states; i.e., SCarom
(sum E-states for all aromatic carbon types) was included in
the ANN, KNN, and SVM models. The bond-type E-States,
eaC2N2a (E-State for bond between aromatic C and N),
eaC2C3s (bond E-State between two aromatic carbons, one with
a substituent group), and SaaN (sum of E-States for aromatic
nitrogen atoms) were included in one or more of the models.
Therefore, in varying degrees the models reflect the importance
of both ionizable groups and aromaticity. In some cases,
analogous descriptors are included in different models (see Table
4). For example, eaC2C3s found in the ANN and SaasC in the
MLR model are analogous for both aromatic atoms and bonds
with substituents.

Let us now consider how these important topological descrip-
tors, the 19 together with logP in Table 4, relate to QSAR
variables found in previous studies on serum plasma proteins
or HSA binding. Recent efforts over several years to develop
QSAR models for serum protein or human serum albumin

binding of drug or drug-like compounds have focused on
moderately sized datasets13,16,27-33 with the exception of one
large chemometric analysis.33 In all of these studies, calculated
logP was found to be the most important descriptor in QSAR
models involving other physicochemical parameters. By con-
trast, LogD was found to have little or no correlation to HSA
binding.9,31

In one particular study by Colmenarejo29 using HSA-HPLC
affinity column chromatography data (based on immobilized
albumin) on 94 drugs, xch6 (a ring molecular connectivity
descriptor) was found in two models, ranked second behind logP
in importance, followed by three electronic and surface area
descriptors. The purpose of this model was to predict the
retention index, logk(HSA), which is considered to be directly
correlated to %PB. Using the reported HPLC data from this
latter study, Hall et al.32 developed a QSAR-MLR model
constructed only on topological indices without the use of logP.
With only five topological indices employed, the 84 drugs in
the training set gave anr2 ) 0.77 for all 84 compounds. In the
Colmenarejo model, only 79 compounds were included because
five were found to be large outliers, for the diminished data set
r2 ) 0.78. With a 10 compound validation set and the five
topological indices, the Hall QSAR model gave an MAE)
0.31 with no large residuals. Of the five descriptors found
(SCarom, xch6, SsFCl, SHCsats, and SsOH), the first three are
found among the most important variables in our QSAR protein
binding models; the last two of secondary importance.

The structure descriptors found to be important in the ANN
model may be compared to fragments from a chemometric
model involving affinity binding to the 3A subdomain of HSA.33

The model was based on contributions of 74 fragments for a
data set of 889 compounds. These data was composed of 232
compounds withKd < 10-3 M, considered as active binders,
and 657 compounds considered inactive (poor binders withKd

>10-3 M). Table 10 summarizes the comparison of relevant
ANN descriptor trends with fragments counts. Eighteen indi-
vidual topological descriptors out of 33 from the ANN model
could be mapped specifically to drug fragments found important
for binding to the 3A subdomain. More notably all 18 topologi-
cal descriptors had their predominant trends in the same direction
as trends based on the sign of the weights assigned to fragments
in the 3A domain binding study model. Minor exceptions are
also evident in Table 10 with respect to trends based on the
descriptors (signified by+ and- signs) versus trends assigned
to fragments. Nonetheless, it is gratifying that such an agreement
exists among trends in the ANN model and those coming from
the fragment approach, considering the following:

(a) The fragment model is based only on 3A subdomain
affinity binding whereas the ANN train set involved intact HSA.

(b) The fragment model is based on a linear regression model
rather than the nonlinear machine-learning algorithm with its
totally different selection processes for the independent variables.

(c) The fragment model uses affinity dissociation constants,
Kd, to develop the fragment model rather than %PB values as
used here in the QSAR ANN model.

It is also worth noting in the MLR %PB model, 10 out of 14
of the highly ranked topological indices have the same trend as
the corresponding fragments. Although a trend analysis is not
available for the kNN and SVM models, 15 out of 28 and 23
out of 60 topological indices, respectively, have bond-type or
atom-type E-states corresponding to fragments found in the list
of 74 fragments.33

Unfortunately, no major study specific to Site 1, the warfarin
site, in the IIA subdomain of HSA has been conducted as with

Table 9. Characterization of Ionizable Compounds in Train/Test and
Validation Sets at pH 7.4

compounds number percentb MWc CSLogPd

Training Set
acida 213 26.4% 369.7 1.65
base 249 30.8% 347.0 2.22
neutral 268 33.2% 350.3 1.66
zwitterionic 56 6.9% 406.8 -0.01
permanent (+)e 22 2.7% 460.5

Validation Set
acida 46 23.0% 371.4 2.08
base 63 31.5% 376.2 2.21
neutral 67 33.5% 354.8 1.55
zwitterionic 21 10.5% 343.1 -0.38
permanent (+)e 3 1.5% 491.9

a Acid, base, zwitterion, or neutral compound determined by estimated
pKa values for the compound’s ionizable groups using the CSpKa predictor
from ChemSilico LLC.b Percent of train or test set in each ionization group.
c Average molecular weight for ionization class.d Average predicted logP
for ionization class.e Compounds with permanent positive charge are
quarternary amines, pyridinium, or animinium compounds.
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Site 2 binders. Nonetheless, 14 compounds contained in our
808 train set are listed as binders9 to Site 1 and provide some
limited insight into trends of the ANN model’s top 20 indices
in regard to Site 1 binders. All of these 14 compounds contain
at least one aromatic ring, five with heteroaromatic rings, and
four with two-membered, fused ring systems. The 14 compounds
were ceftriaxone, chlorpropamide, dicoumarol, etodolac, furo-
semide, indomethacin, oxyphenbutazone, phenylbutazone, pheny-
toin, sulfathiazole, suprofen, thyroxine, urapidil, and warfarin.
Looking at compounds where at least 6 out 14 compounds
contained the same descriptor, left 10 suitable topological indices
to examine from 20 important ANN descriptors. SsNH2,
e2C3O1s, Gmin, and SCarOH1 all showed a negative trend
indicating presence of a carboxylic acid or amine or electron
withdrawing group signified by Gmin. Each one resulted in
diminished binding at Site 1. Not too surprising was the positive
trends for bond and E-States related to aromaticity; i.e.,
eaC2C2a, eaC2C3s (branched aromatic carbon), SCarom, and
SotArom. SHBint4 and SHBint2 both showed a positive trend.
The latter descriptor suggests that amides, contained in seven
compounds, may aid in binding as well as H-acceptor/donor
groups separated by four bonds as in the case of SHBint4. The
most surprising finding among these 14 Site 1 binders was
compound lipophilicity. It appeared to have a neutral effect.
The computed logP ranged from 0.38 to 3.98 for the 14
compounds but the trend was flat with large changes in logP
for these compounds. A similar trend analysis with the MLR
model also showed this same neutral influence of logP on %PB
values of these Site 1 binders. This is in stark contrast to the
pronounced, positive dependency on logP for Site 2 binders.
Since the number of Site 1 compounds was limited here, no
firm conclusion can be draw on this observed lack of logP

dependency on %PB values until a much larger number of Site
1 binders are identified. Of two remaining identical descriptors,
Gmin and SHBint4, found in both the MLR and ANN models,
their trends in MLR model were same as the trends observed
in the ANN trend analysis. These limited results on the trends
for site I binders for various descriptors in the ANN are mainly
consistent with what is known about Site 1 binders. They are
bulky heterocyclic compounds.7

Conclusions

Results in this study clearly demonstrate the usefulness of
topological descriptors in combination with logP to tackle the
difficult problem of human serum protein binding prediction.
The statistical results on the external validation set indicate that
the ANN model is useful for prediction of new chemical entities.
These current results are consistent with others obtained earlier
using the structure-information approach for aqueous solubility,
human intestinal absorption, and Ames mutagenicity.34-36

Of the four models presented in this study, ANN and kNN
are the two most robust ensemble models with a distinct
difference; the kNN model employed about 50% more con-
nectivity indices and 50% fewer atom-type E-state descriptors
than the ANN model. Such differences may reflect, in part,
establishment of nonlinear relationships between protein binding
and descriptors by the ANN learning algorithm as compared to
molecular similarity matching by the kNN approach. Nonethe-
less, an analysis of the structure descriptors found in the ANN
and kNN models provides a basis for the chemist to develop
structure modifications during the drug design process. The role
of nitrogen-containing compounds, acids, aromatic entities
(atom-type and bond-type E-State descriptors), and skeletal
ramification (molecular connectivity chi indices) are all included
in the structure-information. For each descriptor the trend with
respect to protein binding is reported and can be used as an
indication of the impact of structure modification on predicted
protein binding.

The structure descriptors included in the ANN model were
compared to a list of fragments found important for ligand
binding to the IIIA subdomain of albumin. Analysis of the IIIA
fragment trends with those of important modeling descriptors
in this study clearly demonstrates the structure-information
content of topological indices can be related directly back to
fragments. This information complements what we know about
fragment contributions as they relate to topological indices and
makes the topological structure descriptors that much more
relevant to the chemist. Use of fragments suffers from the
problem that an individual fragment may or may not correspond
to an active modulator depending on compound. Further,
compounds with missing fragments cannot be predicted by such
a method. Topological structure descriptors generally do not
suffer from these problems.36

Supporting Information Available: A listing by name, chemi-
cal formula, molecular weight, and experimental percent binding
to serum proteins is provided. This material is available free of
charge via the Internet at http://pubs.acs.org.
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