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QSAR Modeling of Human Serum Protein Binding with Several Modeling Techniques Utilizing
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Four modeling techniques, using topological descriptors to represent molecular structure, were employed to
produce models of human serum protein binding (% bound) on a data set of 1008 experimental values,
carefully screened from publicly available sources. To our knowledge, this data is the largest set on human
serum protein binding reported for QSAR modeling. The data was partitioned into a training set of 808
compounds and an external validation test set of 200 compounds. Partitioning was accomplished by clustering
the compounds in a structure descriptor space so that random sampling of 20% of the whole data set produced
an external test set that is a good representative of the training set with respect to both structure and protein
binding values. The four modeling techniques include multiple linear regression (MLR), artificial neural
networks (ANN), k-nearest neighbors (kNN), and support vector machines (SVM). With the exception of
the MLR model, the ANN, kNN, and SVM QSARs were ensemble models. Training set correlation
coefficients and mean absolute error ranged frér+= 0.90 and MAE= 7.6 for ANN tor? = 0.61 and

MAE = 16.2 for MLR. Prediction results from the validation set yielded correlation coefficients and mean
absolute errors which ranged frarh= 0.70 and MAE= 14.1 for ANN to a low ofr? = 0.59 and MAE

= 18.3 for the SVM model. Structure descriptors that contribute significantly to the models are discussed
and compared with those found in other published models. For the ANN model, structure descriptor trends
with respect to their affects on predicted protein binding can assist the chemist in structure modification
during the drug design process.

Introduction be unsuitable as therapeutic agent. For reasons such as these,
much research attention is directed toward managing the protein

Most drugs bind reversibly with varying degrees of associa- binding of drug candidates.

tion to human plasma proteins: serum albumin (HSA), alpha-

1-acid glycoprotein (AGP), and lipoproteins. The degree of In human serum plasma proteins, the primary constituent is
binding, expressed as the percent bound (%PB), varies fromHSA, with a lesser amount of AGP and an even smaller amount

0% to 100%. Reported association constihtange from of lipoproteins? The plasma concentration of HSA is around
~10-3to ~10"1°M~L. For AGP a high value of 5 108 M1 600uM for this 66 kDa globular protein, which consists of three,
has been reported for HIV protease inhibitdrs. very similar 3-D structural domains, designated as I, Il, and
Since the drugprotein complex in the plasma acts as a l. Eac_h domain possesses two '_subd_o_main_s, A and B. H_igh-
reservoir for the drug, the %PB is an important parameter in '€Solution X-ray structures have identified eight subdomains:
pharmacokinetic profiling. For this reason protein binding €9t Laatty acid binding sites within all six A and B subdo-
influences many aspects of ADME/Tox properties such as Mains>®By contrast, drug-like compounds have been suggested
metabolism, excretion, and in vivo activity. The latter is t© Pind at either of two high affinity sites. Site-I in the 1A
especially true when a drug candidate possesses both arpubdomainis commonly referred to as the warfarin‘sitéSite-
undesirable physicochemical property (e.g., poor aqueous”’ in subqloma}ln.lllA., is palled the diazepam sﬂé;!tes | and
solubility) as well as an undesirable pharmacological property ! @ré quite similar in size and shape, possessing elongated
(e.g., a high effective concentration requirement). In this case, Nydrophobic pockets with polar residues at the mouth and side
the %PB must have a low to moderate value for the potential Walls, close to the cavity entrance. The pockets are lined with
candidate to have a successful therapeutic consequence iflydrophobic residues: Phe, Trp, lle, Ala, and Leu. At the
clinical trials. In the reverse situation, where %PB is high entrance of Site I, Arg, His, and Lys can undergo electrostatic
(>99.9%) and affinity for HSA is larger than that of the receptor and/or H-bonding interactions with negatively charged groups
targeted by the drug, the volume of distribution of the drug ©F H-acceptors on drug-like compounds. Site-I binds acidic and

becomes highly restrictive; making it likely the candidate would neutral compounds. Arg and Tyr at the cavity entrance of Site
Il bind entities that are neutral or basic at pH 7 4 light of

that fact that the specific binding mode of binding to HSA has
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anesthetics, propofol and halothane, are known to bind to severalTable 1. Compound Attributes in Train and Validation Sets

fatty acid sited! A quantitative assessment of the binding modes structure attribute average  numbeb percent
(subdomains mvplvgd, number of sites, types of |r.1teract|.ons) Ring® 284 978 97.0%
for the great majority of HSA boun_d C(_)_mpounds is Iackmg. N-heteroaromatic rirfy 0.26 263 26.1%
Nonetheless, the need to develop in silico models to predict nonheteroaromatic rirg 0.54 549 54.5%
%PB for early-stage drug candidate selection remains important. ?Onearomatic ringy 0-3% . 166 16.5%
- L used ring system . 543 53.9%
In recent years, publlshed QSAR models for HSA binding | - iable bonds 92 1008 100%
were based primarily on small datasets, usually less than 350 —co,H 0.26 261 25.9%
compounds. In this study we examined over 1000 drug and drug- —NO, 0.03 33 3.3%
like compounds with reported %PB values encountered with amines$ 17 431 42.8
| : . amide$ 0.67 391 38.8%
plasma proteins. To our knowledge, the model reported here is ~oH 075 358 3550
based on the largest human serum protein binding data set taken pajogeng 0.41 258 25 6%
from the literature. In this work we attempt not only to provide  average NumHBa 6.63 1007 99.9%
prediction for new chemical entities (NCEs) but also to elucidate — average NumHBd 212 847 84.0%
average MW 362.4 1008 100%

the important physicochemical properties, structural attributes,
and substituent groups that contribute to %PB. Four different
types of quantitative-structureactivity relationship (QSAR) & Average value for attribute in dqtaséﬂ\ll_]mber of compounds with
models were developed in this present investigation to assesg$Pecified attributes Compound contains a ring structuféType of ring

. . . . Structure.® Primary, secondary, and tertiary amineAmides and sulfonyl
the commonality of descriptors that might exist among these gamigess All Halogens F, CI, Br, and I" MW = Molecular weight! TPSA
models and to assess their robustness for NCE prediction= total static polar surface area of O, N, P, and S along with associated
(validation set). In addition, to compare descriptors found here hydrogen atoms.

with reported results from several other studies.

TPSA 96.4 1008 100%

Molecular Descriptor Selection.An initial set of 628 topological
structure descriptors were computed by ChemSilico soffi®ared
reduced to a set of 180, using the criterion that at least 3% of the

Sources of Compounds and Their Attributes.Data on the descriptor values must have nonzero variance (nonzero in most cases
percent fraction of compounds bound to plasma proteins (%PB) for the 1008 compounds). The descriptors include molecular
came from a variety of sourcé%:*” A clustering technique was  connectivity chi indices, E-State indices of the atom-, bond-, and
used to sort compounds into small groups with similar structures. group-type as well as atom- and group-type hydrogen E-State
If the reported experimental value for a compound was substantially descriptors, kappa shape indices, and several binary indicators (e.g.,
different from the values of other compounds in the same cluster, presence of aromatic ring, types of amides, acids). Counts of atoms,
values were checked for the presence of a data error. Commongroups, or fragments were not included for modeling. Predicted
data errors included: reported fraction unbound instead of fraction LogP was calculated using CSLd§Pand included as a bulk
bound, value not measured in human plasma, or the value reportedoroperty descriptor, resulting in 181 total descriptors available in
was for the primary metabolite. Of the compounds selected, 418 the initial set. This initial set of 181 descriptors was further reduced
(41%) had two or more reported values. If two or more reported by the various selection routines implemented in conjunction with
values for the same compound differed by 30% or more, the the four modeling algorithms investigated in this study. The
compound was excluded; otherwise they were averaged. Severakpproach employed in this investigation for encoding molecular
other classes of compounds excluded were proteins, organometalstructure in topological descriptors is referred to as the strueture
lics, and those reported to show a dose or time dependency. Thenformation representation whose significance for modeling biologi-
number of unacceptable compounds found in various data sourcescally important properties has been discus$ed.
was 103 including 68 duplicates. Twelve compounds selected for ~ Selection Process for Train and Validation Compound Sets.
the 1008 dataset had no quantitative value for %PB. These wereTo select a training set and a validation set of compounds, Ward'’s
reported as negligible, poor, or high %PB and were assigned %PB hierarchical clustering was performed using MDL QSAR softviére.
values of 2, 25, and 80%, respectively. Twenty-two compounds The set of descriptors used for clustering consisted of 115
with fuzzy assignments were found among the high binders. Thosetopological structure descriptors containing only molecular con-
reported with %PB> 90% and> 99.5 were assigned a %PB of nectivity chi indices and atom-type E-State descriptors. Ten clusters
95% and 100%, respectively. were produced. The average cluster size was 112 compounds,

All chemical structures used in molecular descriptor computations €xcluding the two smallest clusters, each containing two com-
were in the neutral form except 25 compounds with a permanent pounds. The validation set (NCEs) was created by random selection
positive charge (e.g., quaternary amines). Table 1 gives importantof 20% of the compounds from each cluster to yield 200
compound attributes for the 1008 drug dataset. Approximately 97% compounds. The four compounds in the two smallest clusters were
of drug compounds had one or more ring structures with an averageassigned to the training set. The compounds in the external
of approximately three rings per structure; 54% had fused rings, validation set were used to determine the predictive capabilities of
and 26% had one or more heteroaromatic rings. On average eachhe four QSAR models developed in this study but did not contribute
compound had nine rotatable bonds. As shown in Table 1, to any phase of model development.
approximately one-quarter of the drugs have a carboxylic acid
group, 26% contain a halogen atom, 61% contained at least oneM0del Development
amine, 35% have an amide group, and 39% have a hydroxyl group. QSAR models were developed using four different modeling
As expected, the molecular weight, number of hydrogen bond a|gorithms: multiple linear regression (MLR), artificial neural
donors and acceptors, and Fotal polar surface area of thesenatworks (ANN), k-nearest neighbors (kNN), and support vector
ComPOUPdS are cc;nfrl]stenrf with Id(;yg-llk_te c?rggggnds. An aé" machine (SVM). Each modeling procedure started with the same
proximate gauge of the chemical diversity o compounas 4nitial set of 181 descriptors (180 topological structure descrip-

(results not given) is revealed by a principal component analysis . ! . .
based on 115 structure descriptors (molecular connectivity and tors together with predicted logP) as independent variables, 808

atom-type E-state indices). The first two PCA components explain compounds for train/test set, and 200 for external validation.
only 28% of the variance, and the first nine components explain ~ MLR Model Development. MLR analysis was accomplished
59% of variance, indicating a high level of chemical diversity with JMP v5 (SAS Institute Inc., Cary, NC) on the 808
among these compounds. compound train set. In the MLR modeling process, a step-

Materials and Methods
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forward selection process was conducted untilrfheeached a Model Developed by kKNN-QSAR.The kNN QSAR methott
semi-plateau where changesrihwere less than 0.2% upon employs the kNN pattern recognition princifl@nd a variable
adding another variable, under the constraint that the numberselection procedure. Briefly, a fixed size subset of descriptors

of descriptors was always less thafN + 5 (N = number of is selected randomly in the beginning of the calculations. The
compounds). Removal of potentially redundant descriptors was model is built using this random descriptor selection with leave-
accomplished using the criterion that the inter-correlatfdior one-out (LOO) cross-validation, where each compound is

all pairwise variables be less 0.90. The final model contained eliminated from the training set and its biological activity is
30 descriptors for the best value. Ranking of the final set of ~ predicted as the average activity of thenost similar molecules

30 descriptors, to indicate relative importance, was determined (K = 1—5). The similarity is characterized by the Euclidean
by a leave-one-out approach and ranked by the sum of thedistance between compounds in multidimensional descriptor
residues squared (RSS) in the absence of the descriptor. A 100Space. A method of simulated annealing with the Metropolis-
fold randomization of %PB values was performed with like acceptance criteri@his used to sample the entire descriptor
computed for each case, yielding an averegess than 0.03 space to converge on the subset of the same size which affords
for the MLR model. The results of this randomization process the highest value of LOQ? (¢f). The descriptor subsets of
indicate that the model is different from an equation based on different sizes are optimized using this procedure to arrive at a

random numbers, suggesting that significant information is Variety of models with acceptablg® greater than certain
contained in the model. threshold (0.6 was selected as the default threshold). The training

ANN Model Development.For the Artificial Neural Network set models with acceptablg are then validated on external
(ANN) analysis, the 808 C(.)mpound train/test set, designated test sets to select the 10 predictive models, the ensemble model,

the principal set, was randomly split into 90% for training and discussed above. Further details of the kNN method
P P ' y sp gar implementation, including the description of the simulated

%nnealing procedure used for stochastic sampling of the descrip-
éor space, are given elsewhéfe.

The original KNN metho#f was enhanced by using weighted
molecular similarity. In the original method, the activity of each
compound was predicted as the algebraic average activity of
its k-nearest-neighbor compounds in the training set. In general,
however, the Euclidean distances in the descriptor space between

to produce 10 mutually exclusive train/test sets (or folds) of
the data. The selection was carried out such that each compoun
in the principal set appeared in a test set only once and was
used for training nine times. A standard back-propagation neural
network was used for this study. The network contained no more
than nine hidden neurons and utilized the backward elimination
approacf-2*for descriptor selection which has been adapted , compound and each of ksiearest neighbors are not the same.
from traditional linear regression methods. Thus, the neighbor with the smaller distance from a compound
Each training set was processed separately with the neuralis given a higher weight, with exponential dependence on

network algorithm, using the test set to prevent over fitting. distance, in calculating the predicted activity as follows:
Each model was applied to the corresponding (internal) test set

to calculateg?, which is ther? value for all instances in which exp(d)
the data was withheld from the modeling process. This multiple wW=——
selection process leads to a set of 10 models with predicted =k

values which were averaged, called an ensemble model. The Z) exp(—d)
average value of 10 neural nets, the ensemble model, gives the =

predicted %PB value of a compound. Ranking of descriptors .

with respect to their importance in the model was determined y= z WY,

as the ratio of the difference in RSS (sum of squares of residuals) ] ] )

in the presence and absence of the variable, divided by the Hered:is the Euclidean distance between the compound and
smallest difference (the least important variable in the train- 1S knearest neighborsis the number of nearest neighbors,
test set), using an average RSS values from all ten ANN models.iS the weight for every individual nearest neighbor, ands
Using this approach, the variables judged to be noncontributory the actual activity value foith nearest neighbor. In summary,

are pruned during the 10-fold cross-validation in a backward € kNN algorithm generates both an optimémalue and an
stepwise manner until thé declined two consecutive times by ~ OPtimal subset of descriptors, which afford a QSAR model with

more than 0.022 units. The last model, just prior to this drop  the highest value af?. This modified algorithm was also applied

in r2, was selected as one with the optimal descriptor subset recently to the kNN QSAR modeling of anticonvulsant agénts.

' . . "~ Model Development by SVM.The ort Vector Machine

As a general rule, we considered only models with an absolutetechnique (SVVM)pwas dexileloped bys\?:p??ﬁlas a ge:leral di’;lta
value ofg? = 0.50 as the minimum cut off value fap (with

. . . modeling methodology where both the training set error and
corresponding higher values fid). Typically, we observed that d gy g

2 val h h > the model complexity are incorporated into a special loss
r values were greater than the correspondifigy 0.1 10 0.3~ ¢ nction that is minimized during model development. The

units. By this backward elimination process the initial starting methodology allows one to regulate the importance of the
set of 181 descriptors was reduced to 33 in this ANN analysis. aining set error versus the model complexity to develop the
The relative importance of each eliminated variable is based oniimum model that best predicts a test set. In later develop-
on its contribution across the entire train/cross-validation sets ments, SVM was extended to afford the development of SVM
by calculation ofr?. regression models for datasets with noninteger activities and
Since the training? is used to select the variables, it does used for QSAR development.

not provide a reliable assessment of the predictive accuracy of We have implemented the SVM method for QSAR modeling
the overall algorithm. This task is reserved for the independent to construct a 10 member ensemble model. Each SVM member
external validation set of 200 compounds, which was not used was developed as follows: leh be the number of points

to generate an algorithm or select an optimum subset of inputsrepresenting the training set compounds with known biological
during the backward elimination process. activity in ann-dimensional descriptor space. The problem is
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to generate a hyper-surface in the descriptor-activity 1) Table 2. Results of Four QSAR Models for Training and Validation
dimensional space that relates descriptor values to the biologicalPatasets
activities. Thus, the biological activity of any compound can  model number  R? MAE2 RMSE descriptors

be predicted from its descriptors by placing the point corre- Training Set Statistics
sponding to this compound on this hyper-surface. ANN 808 0.90 7.6 10.8 33
Given a training set of instance-label paixs ¢), i =1, ...., kNN 808 0.62 15.6 20.9 29
MLR 808 0.61 16.2 21.0 30

mwherex;, €, R" are the descriptors that describe each compound

. . . o SVM 808 0.62 16.2 21.7 61
andy; is the biological activity (e.g., %PB) of each compound, o o
the sought correlation between structure and activity can be Validation Set Statistics
S ; . ANN 200 0.70 14.1 18.6 33
represented ag = f(x). For simplicity, we will define ff;) to KNN 200 0.59 16.7 218 29
be a linear function of the form MLR 200 0.59 17.2 21.8 30
SVM 200 0.59 18.3 23.3 61
f(Xi) = Ebi’ XiD'l_ b aMAE, mean absolute errors 1/N x Y (|%PBsxp — %PByred) Where

N = number of compound$.RMSE is root-mean-square error.
wherew is the coefficient vector of the linear function ahds
the bias. One major goal of any regression algorithm is to Cande values are commonly selected based on the values that

minimize the errors between the predicted and the actual valuesdive the best test set results.

as defined by in the following equation: In many cases we use a “grid-search”@mnde to identify
the best parameters. There are several advanced methods which
ly; — ([, XD+ b| = & can save computational cost by estimating the best parameters.

There are two reasons why we preferred a simple grid-search

As a means of regulating generalization of the algorithm, @pproach. First, unlike alternative methods which use ap-
SVM utilizes the following constraint to solve the optimization ~Proximations or heuristics, a grid-search allows for an exhaustive

problem: with the constraint: parameter search and does not have a convergence problem due
to local minima. Second, the computational time to find good
2 o'o m parameters by a grid-search is not much longer than the time
min—+C ) § required by advanced methods since there are only two
wbg 2 = optimization parameters. Furthermore, the grid-search can be
easily parallelized because each parameter is independent. Many
lyi — (cuT d(x) + bl =§; of the advanced methods for parameter estimation are iterative

processes, e.g. walking along a path, which is difficult for
whereas the training vectorgs are mapped into a higher parallelization.

dimensional space by a kernel functi@h. Then the SVM For large datasets, a complete grid-search may be overly time-
algorithm finds a linear correlation between the actual activity consuming; therefore, we commonly use first a coarse grid on
and this higher dimensional spa@€x). The quantity C ¢ 0) a subset of available data. A user may randomly choose a subset

is the penalty parameter of the error term that controls the weight of the dataset, conduct a grid-search using those compounds,
between the two terms in the SVM optimization problem. and then do a fine-tuned grid-search on the complete dataset
During optimization, the relative weights are assigned to each over the parameter value ranges that exhibited the best results.
descriptor whereby a large number of the descriptors are given
a weight of zero to minimize the value of the loss function. Results
However, a small number of descriptors are given a nonzero Statistical Information on the QSAR Models. Four different
weight and the absolute value of that weight implies the relative QSAR algorithms were employed in this investigation. MLR
significance that descriptor has on activity prediction. was used as a baseline regression method along with three
In many cases the binding activities may contain small errors machine learning algorithm approaches, ANN, kNN, and SVM,
or the kernel function may not be capable of perfectly represent- to investigate their performance in model development based
ing the training compounds in a simplified manner. As a means on fitting a training set followed by predictions on an external
of inhibiting the algorithm from producing an overly compli- validation set. Statistical results from prediction of the training
cated training set correlation that would not accurately predict set (808 compounds) and the validation set (200 compounds)
a test set, we included a slack variakleThis slack variable is by each of the four models are summarized in Table 2. For the
a threshold of prediction error for any compound’s activity training set, the ANN model gave the lowest mean absolute
before the algorithm is penalized for a poor prediction. Beyond error (MAE) equal to 7.6 using 33 descriptors, followed by the
the boundary the algorithm is penalized by the value &f— kNN model with MAE = 15.6 using 29 descriptors. Surpris-
€. When combining the SVM optimization problem defined with ingly, the MLR and SVM models gave essentially the same
a linear kernel, the following SVM loss function is obtained: statistical outcomes: MAE=16.2 and 16.6, respectively. The
) SVM ensemble model employed 61 variables. Another char-
loss= [lw]| n Ci=_l 0if & <€ ] acteristic of models is the ratio of observations to input variables
min 2 ml|& —€if§>e€ (i.e., structure descriptors and logP). For three of the models
that ratio is 24 (ANN) and 27 (kNN and MLR). However, the
The nature of SVMSs requires one to specify a priori the values SVM model required nearly twice as many descriptors as the
of C ande since it is not known beforehand which values may other models, leading-to-a ratio of 13. Generally a ratio greater
work best for the dataset; thus, a parameter search must behan 10 is considered reasonable for QSAR models.
performed. The goal is to identify good values@éande such The most important criteria of how robust a QSAR model
that the model can accurately predict unknown data (i.e., testingis, are differences in the predicted versus experimental values
data). In most circumstances, the highest training accuracy doescoming from the use of a compound validation set. Of the four
not yield the best accuracy on a test set. Therefore, the optimumQSAR models, ANN and kNN performed best with MAE
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R2=0.70 MAE=14.1 92% predictions AE < 30 R2=0.60 MAE=16.9 84% predictions AE <30
100 u e q %
90 . = q:’ ‘0 E ‘,-"‘:0
80 - e Ve * b », -
70 R 3. et d’.” i ey ". >
60 A %ee .t q ,5'0!“‘ P %%
50 - L. ol - = »
1 n- 4 . % d -9, 3 . *
40 :‘Q 3 oy - YAl $e . -
o 304 .- s ’ 1.4, .
S 207 £ ) IS XL T
c 01 .’“" 1 & e e
& o . F : o
E T T T T T T T T T T T T T — T T T T T T T
7] 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
&
ES k-Nearest Neighbors (kNN) n =200 Support Vector Machine (SVM) n =200
E RZ2=0.59 MAE=16.7 85% predictions AE < 30 R%=0.50 MAE=18.3 78% predictions AE < 30
5] - -
° 100 1 - ..
@ B
I naes ] nee e, e
80 et 4 3 » =
Y - - * ,
70 L ban 2| POSE ™
60 - . e 0: .+ 4 e * * .0" -
50 4 ades LEe T . o 0’0’ 2 7
40 e S & 1 e 3.0 PAe
o .- . S =
304 7 Sete {99 *
201 » (P Jretegt T ¢t a0
L L
] Lk [ oot &
0 E xa

T T T T T T T

T T T T T T T T T

0 10 20 30 40 S50 60 70 80 80 100 0 10 20 30 40 50 60 70 80 90 100

Experimental %Protein Binding

Figure 1. QSAR modeling results for a 200 compound validate set for four models; ANMificial neural net, KNN= k-nearest neighbor, MLR
= multiple linear regression, SVM support vector machine. Dotted diagonals are 30% off-sets from experimental PB values. Gray boxes represent
predictions outside the- 30% range.

14.1 and 16.7, respectively. The MLR and SVM models were models for arebekacin and poor agreement for acenocoumarol.
quite similar in their predictive ability, differing by only 6% in  Furthermore, the range in AE values, 0% to 72%, prompted us
their MAE values; MAE= 17.2 and 18.3, respectively (See to examine the worst predicted compounds for each model. We
Table 2). Considerable differences did exist in the predictive computed? and MAE for all four models upon removal of 5%
capabilities among the models as revealed in the distribution of the compounds with largest AE values, 10 for each model.
of predictions for the 200 compound validation set, shown in On averagef? increased substantially (by 17%) and MAE
Figure 1. These differences may be highlighted by subdividing declined significantly (by 11%) for the models when 5% of the
the validation set into three subsets based on the range of %PBlata with the largest residuals was removed. Examination of
values and then examining the prediction quality within each these compounds (where AE ranged from 40% to 72% among
subset. The lower range is defined as %PRB5% (14% of the the models) revealed that three compounds, ambroxol, nirida-
validation set), a midrange from 15 to 85% (48% of the zole, and desbrisoquine, were common to the ANN, MLR, and
validation set), and an upper range of compounds with %PB kNN models. These three compounds plus tilidine, pravastatin,
>85% (38% of the validation set). The MAE values for the cilazapril, and zonisamide were common to the ANN and MLR
ANN model were 14, 17, and 10 in these three %PB ranges. models. For the SVM model, only two compounds, nafarelin
The corresponding values for the kNN model are 15, 19, and and buprenorphine, were found in common only with the kNN
14. In the bottom range, the MLR and SVM models yielded model. These model dependent outliers have very little structural
MAE = 25 and 16, respectively. In the mid and top ranges the similarity; so unless the reported %PB values are in error, the
MAE values for MLR and SVM were 17 and 19, and 14 and models could not predict binding values for these compounds
19, respectively. It is evident the models are not balanced in within 40% of their experimental ones.
their MAE values across these three subsets. The ANN model Important Structure Descriptors. A summary of the
does better at the high %PB range than any of the other QSARdescriptors ranked as the top 20 in importance (19 topological
models and somewhat better in the low to middle ranges. Theindices plus logP) together with their frequency of occurrence
same unbalanced predictions also occur when these subsein the train/test dataset are given in Table 4 for all four QSAR
ranges are expanded or contracted by 15% in their PB values.models. The mean trends in descriptor values with %PB are
Table 3 summarizes results from all four models for the also given for two models, ANN and MLR. Here frequency of
external validation set: experimental 8B predicted %PB occurrence is defined as the percentage of compounds for which
values, absolute error (AE), and the calculated logP valuesthe descriptor is present, nonzero. A global descriptor is defined
(CSLogP) for each of the 200 compounds. All models agreed as one for which the frequency 90%. Atom-type E-state
within less than 15% in their predicted %PB values for only descriptors, signified by a capital S, and bond-type indices,
34% of the validation compounds. Best agreement, less 15%signified by e, are the predominant descriptors in all models.
difference in their predicted %PB values, was found among the These two descriptor classes as a percent of the total descriptors
ANN and kNN models on 158 compounds in 200 member found in a model ranged from 95% in the ANN model to 50%
validation set. However, it is apparent from Table 3 the spread in the KNN model with the remaining indices being molecular
in AE values from the four models for a given compound can connectivity descriptors. LogP, the most important descriptor
be small or large; e.g., good predictive agreement among thein all models, had a wide range of values fron3 to 7 with
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Table 3. Results for QSAR Models on 200 Validation Compounds for Percent Serum Protein Binding (%PB)

compound CSLogP PBexp PBpred(ANN) AEY PBpred (kNN) AE PBpred (MLR) AE PBpred (SVM) AE
17-5-estradiol 3.33 98 95 3 93 5 83 15 94 4
17-hydroxyprogesterone 2.84 85 920 5 88 3 75 10 93 8
acenocoumarol 1.71 98 97 1 72 26 87 11 85 13
albendazole sulfoxide 1.76 70 89 19 62 8 66 4 65 5
alfadolone 1.86 30 63 33 73 43 57 27 58 28
amantadine 2.10 66 25 41 44 22 29 37 35 31
ambroxol 0.05 90 28 62 27 63 22 68 44 46
amdinocillin 1.10 14 71 57 41 27 48 34 0 14
amisulpride 1.16 16 15 1 46 30 40 24 32 16
amithiozone 1.24 95 53 42 50 45 53 42 56 39
amitriptyline 3.93 95 85 10 92 3 83 12 86 9
amoxicillin —-1.49 19 15 4 21 2 34 15 25 6
aprobarbital 1.16 62 44 18 47 15 48 14 43 19
arbekacin —3.94 8 9 1 7 1 0 8 0 8
azithromycin 3.77 35 39 4 55 20 53 18 43 8
baclofen —0.68 30 42 12 71 41 52 22 35 5
barbital 0.75 10 36 26 29 19 43 33 13 3
bleomycin 4.80 10 30 20 30 20 63 53 16 6
bopindolol 2.57 65 93 28 71 6 67 2 77 12
brotizolam 2.90 90 93 3 77 13 100 10 95 5
bunazosin 2.18 97 91 6 78 19 77 20 100 3
buprenorphine 4.20 96 59 37 51 45 87 9 46 50
calcifediol 4.16 80 96 16 92 12 80 0 100 20
capecitabine 1.47 30 56 26 54 24 51 21 35 5
carbenoxolone 3.89 100 87 13 93 7 100 0 53 47
carbidopa —2.33 36 10 26 9 27 28 8 25 11
carbimazole 0.15 7 10 3 15 8 37 30 49 42
cefdinir -1.87 65 47 18 41 24 17 48 32 33
cefoperazone 1.08 91 62 29 80 11 78 13 66 25
cefoxitin 0.42 72 45 27 57 15 44 28 34 38
cefprozil —0.89 40 35 5 24 16 49 9 34 6
cefsulodin 0.11 23 39 16 29 6 17 6 0 23
ceftizoxime —-0.58 29 44 15 48 19 45 16 65 36
cetirizine 2.60 93 60 33 97 4 80 13 80 13
cevimeline 1.52 15 26 11 41 26 25 10 24 9
cilazapril 0.65 25 73 48 44 19 71 46 15 10
cilostazol 3.30 97 99 2 88 9 93 4 100 3
cladribine 0.16 20 13 7 13 7 34 14 12 8
clindamycin 2.59 94 71 23 71 23 55 39 32 62
clomipramine 5.25 97 100 3 96 1 96 1 56 41
clonidine 1.32 25 35 10 64 39 50 25 36 11
clorazepic acid 3.26 91 90 1 97 6 98 7 100 9
cortisone acetate 2.37 95 85 10 78 17 66 29 89 6
cytarabine —2.42 14 0 14 7 7 4 10 0 14
dacarbazine -0.20 5 27 22 36 31 21 16 0 5
debrisoquine 0.14 85 45 40 27 58 42 43 57 28
deferiprone —-0.74 33 4 29 15 18 41 8 11 22
deflazacort 271 40 75 35 72 32 76 36 63 23
demeclocycline -0.28 54 53 1 58 4 60 6 49 5
dicamba 241 99 79 20 80 19 79 20 56 43
didanosine —1.26 3 25 22 10 7 25 22 51 48
diflunisal 3.63 99 90 9 94 5 83 16 77 22
dihydroergotamine 291 93 85 8 94 1 95 2 100 7
diltiazem 2.58 81 96 15 95 14 72 9 83 2
doxazosin 1.80 95 95 0 82 13 97 2 51 44
doxepin 2.79 80 75 5 88 8 71 9 39 41
encainide 3.76 70 91 21 89 19 82 12 94 24
etidocaine 2.82 94 89 5 63 31 67 27 79 15
etilefrin —0.58 25 51 26 19 6 31 6 14 11
everolimus 3.32 74 90 16 66 8 100 26 78 4
fendiline 4.22 95 86 9 96 1 100 5 100 5
fenoprofen 3.05 99 95 4 98 1 94 5 100 1
fexofenadine 4.25 65 90 25 95 30 100 35 94 29
flunitrazepam 231 79 88 9 91 12 75 4 80 1
flurbiprofen 3.04 99 96 3 98 1 91 8 a7 52
flutamide 2.91 90 73 17 84 6 82 8 86 4
fosfomycin -1.11 2 20 18 7 5 29 27 24 22
fosinoprilat 2.25 98 84 14 79 19 76 22 64 34
galantamine 1.29 18 21 3 64 46 47 29 42 24
gemcitabine -0.79 2 8 6 12 10 24 22 52 50
gentamicin —3.64 20 24 4 8 12 0 20 0 20
gliclazide 1.02 91 86 5 81 10 71 20 64 27
glufosinate ammonium —2.74 1 2 1 6 5 19 18 0 1
guanethidine —0.38 5 3 2 15 10 1 4 0 5
hexobarbital 1.74 48 51 3 54 6 53 5 48 0

hydromorphone 1.59 7 21 14 24 17 48 41 44 37
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Table 3 (Continued)
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compound CSLogP PBexp PBpred (ANN) AEY PBpred (kNN) AE PBpred (MLR) AE PBpred (SVM) AE
hydroxychloroguine 1.77 50 67 17 75 25 64 14 68 18
ibomal 1.54 34 51 17 47 13 46 12 14 20
idebenone 2.69 90 89 1 86 4 71 19 71 19
imipramine 4.70 88 95 7 95 7 86 2 92 4
indoprofen 2.72 99 96 3 97 2 93 6 79 20
isoniazid —0.72 3 17 14 13 10 28 25 0 3
isosorbide mononitrate  —0.29 3 16 13 14 11 23 20 3 0
isradipine 3.63 97 90 7 92 5 85 12 55 42
itraconazole 3.93 100 90 10 75 25 100 0 100 0
lamivudine —1.48 36 8 28 6 30 18 18 10 26
letrozole 3.31 60 73 13 63 3 59 1 42 18
levocabastine 3.01 55 89 34 90 35 85 30 79 24
levofloxacin —0.40 27 25 2 34 7 52 25 37 10
levorphanol 3.15 40 63 23 90 50 64 24 47 7
liothyronine 1.36 98 92 6 82 16 71 27 73 25
lisinopril —2.47 10 23 13 23 13 45 35 0 10
lomefloxacin —0.47 12 31 19 24 12 47 35 22 10
lopinavir 5.35 99 87 12 97 2 100 1 100 1
lysergide 2.32 90 74 16 62 28 71 19 65 25
medroxyprogesterone 3.14 94 92 2 91 3 e 17 83 11
mefruside 1.56 65 79 14 51 14 69 4 32 33
meloxicam 2.03 100 97 3 75 25 84 16 71 29
melperone 3.57 50 60 10 75 25 67 17 78 28
meprobamate 0.76 20 23 3 38 18 21 1 0 20
meptazinol 2.83 27 37 10 58 31 53 26 50 23
methacycline —0.15 84 60 24 61 23 60 24 51 33
methadone 3.21 84 88 4 85 1 72 12 100 16
methohexital 1.62 77 49 28 54 23 64 13 45 32
metildigoxin 1.77 15 37 22 38 23 69 54 44 29
metronidazole —0.23 10 16 6 34 24 27 17 7 3
mexiletine 2.03 65 50 15 51 14 60 5 44 21
mibefradil 5.08 99 90 9 91 8 96 3 100 1
midazolam 2.85 96 91 5 82 14 78 18 89 7
montelukrast 5.28 99 98 1 83 16 100 1 100 1
mupirocin 2.88 96 91 5 88 8 71 25 75 21
nafarelin 5.74 80 50 30 31 49 86 6 23 57
naloxone 1.77 45 34 11 24 21 60 15 69 24
nefazodone 3.12 99 98 1 91 8 86 13 100 1
netilmicin —3.75 10 23 13 7 3 0 10 0 10
nicardipine 4.59 98 98 0 94 4 91 7 64 34
nicorandil —0.69 25 25 0 21 4 27 2 6 19
niridazole 0.56 85 38 47 17 68 39 46 39 46
nitrofurantoin —-0.21 63 49 14 21 42 33 30 32 31
nitroglycerin 1.18 60 55 5 55 5 43 17 27 33
nizatidine 0.08 29 3 26 18 11 40 11 0 29
norethisterone 2.75 80 90 10 86 6 75 5 90 10
norfloxacin —0.15 15 39 24 42 27 52 37 0 15
octreotide —0.51 65 37 28 74 9 57 8 27 38
olanzapine 3.14 93 84 9 920 3 87 6 93 0
ornidazole 0.13 15 22 7 36 21 35 20 20 5
oxitropium 3.95 7 7 0 20 13 25 18 26 19
paclitaxel 2.46 65 92 27 97 32 94 29 81 16
paramethadione 0.67 0 16 16 18 18 35 35 30 30
paroxetine 2.33 95 99 4 92 3 59 36 69 26
hepe 2.82 100 77 23 76 24 94 6 38 62
penicillin 13 2.07 66 70 4 65 1 58 8 49 17
penicillin 20 2.54 94 78 16 84 10 63 31 69 25
penicillin 24 3.12 94 92 2 94 0 88 6 100 6
penicillin 27 —0.05 60 51 9 35 25 48 12 94 34
penicillin 28 0.28 55 53 2 52 3 55 0 44 11
penicillin 30 —0.04 26 40 14 49 23 48 22 42 16
penicillin 31 —1.51 12 18 6 22 10 28 16 8 4
penicillin 38 2.50 62 82 20 79 17 76 14 61 1
penicillin 40 3.09 83 91 8 90 7 84 1 77 6
penicillin 45 2.64 65 87 22 80 15 74 9 63 2
penicillin 46 1.14 60 73 13 75 15 60 0 54 6
penicillin 48 221 82 79 3 77 5 72 10 49 33
penicillin 57 2.80 96 89 7 94 2 82 14 81 15
penicillin 60 1.50 86 68 18 78 8 62 24 59 27
penicillin 62 2.28 80 84 4 80 0 69 11 64 16
penicillin 70 3.02 97 88 9 90 7 88 9 48 49
penicillin 74 2.10 90 74 16 77 13 71 19 7 13
pentachlorophenol 5.08 99 98 1 80 19 100 1 92 7
perphenazine 3.65 92 99 7 92 0 91 1 45 47
phenformin 0.79 16 38 22 28 12 39 23 8 8
phentolamine —-1.22 54 52 2 57 3 41 13 71 17
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Table 3 (Continued)

compound CSLogP PBexp PBpred(ANN) AEY PBpred (kNN) AE PBpred (MLR) AE PBpred (SVM) AE
pirenzepine 0.60 10 43 33 66 56 39 29 52 42
piroxicam 1.28 99 91 8 68 31 79 20 84 15
pravastatin 4.41 48 97 49 93 45 97 49 64 16
praziquantel 1.19 83 78 5 88 5 62 21 65 18
prednisolone 1.46 88 72 16 75 13 61 27 72 16
prenylamine 4.29 97 86 11 96 1 100 3 100 3
probenecid 2.28 90 86 4 94 4 88 2 100 10
procainamide 1.10 17 11 6 49 32 37 20 19 2
propoxyphene 3.75 75 89 14 90 15 78 3 94 19
raloxifene 4.50 97 91 6 92 5 100 3 100 3
reproterol —2.10 50 51 1 7 43 11 39 21 29
ritonavir 4.74 100 92 8 89 11 100 0 100 0
ropinirole 2.57 40 69 29 51 11 59 19 62 22
ropivacaine 2.39 94 88 6 48 46 59 35 63 31
sertraline 3.35 99 89 10 93 6 96 3 100 1
sodium cromoglicate 1.73 65 71 6 69 4 100 35 70 5
spironolactone 2.39 98 77 21 68 30 74 24 100 2
sulfamethoxazole 0.56 63 90 27 85 22 70 7 68 5
sulfamethoxypyridazine 0.77 75 90 15 84 9 89 14 87 12
sulindac 3.90 93 99 6 97 4 100 7 100 7
sulpiride 0.66 25 10 15 30 5 44 19 56 31
tacrine 2.01 55 80 25 76 21 68 13 70 15
tacrolimus 3.59 87 88 1 58 29 84 3 83 4
tebufelone 5.21 100 97 3 93 7 87 13 89 11
terazosin 2.09 91 89 2 75 16 78 13 86 5
terbutaline —0.67 21 38 17 32 11 26 5 37 16
tetrazepam 3.50 70 94 24 79 9 89 19 50 20
tianeptine 1.63 95 87 8 81 14 94 1 100 5
ticarcillin 0.64 58 52 6 69 11 49 9 51 7
tilidine 3.05 25 82 57 67 42 70 45 60 35
tiludronic acid —0.03 90 62 28 18 72 59 31 54 36
timolol 1.33 10 22 12 21 11 67 57 42 32
tocainide 0.83 13 33 20 34 21 54 41 32 19
tolamolol 1.30 91 61 30 48 43 49 42 47 44
tolbutamide 181 96 74 22 70 26 80 16 64 32
tolfenamic acid 4.81 100 98 2 99 1 100 0 92 8
topiramate 0.59 15 36 21 51 36 34 19 55 40
tramadol 2.20 13 30 17 43 30 44 31 0 13
troglitazone 2.53 100 95 5 93 7 75 25 100 0
tubocurarine 5.94 45 62 17 85 40 75 30 28 17
valacyclovir —0.52 18 18 0 10 8 22 4 0 18
valsartan 2.95 95 96 1 90 5 100 5 94 1
vigabatrin —2.85 0 1 1 6 6 17 17 0 0
vinorelbine 2.54 85 75 10 91 6 98 13 79 6
zanamivir —3.31 5 10 5 15 10 0 5 0 5
zolpidem 2.80 93 87 6 77 16 86 7 72 21
zonisamide 1.08 40 84 44 57 17 62 22 16 24
zopiclone 1.45 45 31 14 69 24 45 0 21 24

aPredicted logP (CSPredict v2.0.3.1, ref 18Experimental % protein binding.Predicted % protein binding by the indicated modeAbsolute error
calculated agpredicted— experimentdl

14%, 79%, and 9% of compounds in the range freito O, more, no model has a majority of global descriptors (a frequency
0to 5, and 5 to 7, respectively. Seventeen descriptors (in bold >90%). ANN, kNN, MLR, and SVM had two, eight, four, and
in Table 4) were found in two or more models. Seven descriptors four global descriptors, respectively. The average frequency for
in the ANN models were found in both the MLR and SVM nonglobal descriptors is 36%, about one in every three
models, five in common with the kNN, and three or more compounds; however, 40% of these nonglobal indices have an
identical indices were common among the kNN or the MLR or average occupancy of 14.6% or about one in every seven
SVM models. Two descriptors in the top 10 that are common compounds. This information indicates, in the optimization
to all models are logP and SallNp (sum of E-states for process, models are selecting descriptors which represent very
permanently charged nitrogens; see Table§) SCarom and specific structural attributes.
e1C3N3 were next in commonality, found in three of the four ~ Two models, ANN and MLR, were amenable to a mean trend
models. As indicated in Tables 7 and 8, SCarom is the sum of analysis. A descriptor trend points out the relationship between
E-state values of all aromatic carbon types; e1C3N3 is the sumthe change in descriptor value and the resulting change in
of the bond E-states for a $parbon ¢ CH-) single-bonded to calculated protein binding value. In the procedure for determin-
a tertiary nitrogen atom>N-) where the letter, e, signifies a ing a descriptor trend, the descriptor value is incremented 100%
bond-type. (up/down 50%) of its range in 10 evenly spaced intervals, while
Of some additional interest is the frequency of the descriptors. all other indices are held constant. The resulting set of computed
As seen by the frequency and ranking values in Table 4, the property values is plotted against the changed descriptor values.
important ranked topological descriptors are independent of their These plots were examined for trends. In general, some plots
frequency percentages. The rank and frequency values areexhibit increasing or decreasing relationships which are nearly
uncorrelated:r? = 0.03, averaged over the four models. Further- but not exactly linear. Others indicate a nonlinear relation with
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Table 4. Ranking of Top 20 Descriptors in QSAR Modgls

Journal of Medicinal Chemistry, 2006, Vol. 49, Né124

ANN FQ"  Trend® kNN FQ" MLR FQ"  Trend® SVM FQ"
CSLogP 808 i CSLogP 808 CSLogP 808 + CSLogP 808
Ssp3N 177 - SaliNp 18 SallNp 18 - AromMol 646
SallNp 18 - [eIN2S4dd | 38 Gmin 808 & SaaCH 628
SHBint2 471 - dxp4 801 xché 725 + SCarom 656
SHCarOH]1 225 t dxvl 807 5sp20H 232 + eaC2C2a 558
[ SCarOH1 | 225 - dxvp8 785 Ssp3N 177 . SsssCH 425
SHBint4 195 - SCarom 646 SaasC 642 . 54
eaC2C3s 600 i xpd 801 eaC2N2a 95 2 e1C3S4da 56
Gmin BO8 xpl0 728 xvché 725 - SHArom 628
SotArom 223 . Cda2 | 807 SdsCH 162 + 18
SPheOHI1 74 - dxvp7 791 SaaN 166 + 186
elC3N3 223 - SaasN 55 elC3NI1d 232 - eaC2C3s 600
SCarom 646 - [elC301d | 41 139 + 808
Ssp3NH 81 - NArom 197 SOAmide2 37 + xché 725
€2C301s 565 SaaN 166 [ xvps | 782 + SssssC 310
SsssN 425 variable xveh9 151 807 s SOAmide2 37
xch10 195 i dxvp6 797 SHBint4 195 5 [dxv] 808
eaC2C2a 558 - SHvin 162 SArNH2 54 - dxv0 807
eaC2N2a 95 - elC3N3 223 xch10 195 + elC3N3 223
SsNH2 174 Ssp3NH 81 AromMol 646 + SsNH2 174

a Grayed-out descriptors signify descriptors found in two or more models; Boxed-out descriptor indicate a homologous descriptor found in two or more
models.P Frequency (FQ) is the number of compounds in the 808 compound train/test sets with a nonzero value for the given desgatidive trend
indicates % protein binding will generally increase with an increase in the descriptor value. A negative trend indicates the inverse effecarkezshds m
variable may have either a positive or negative effect on predicted %PB depending on the value of other descriptors. The ANN and MLR mean trends were
evaluated by holding all other descriptor values constant and varying the given descriptor value by 50% up and down to determine the direcdonal chang

in %PB.

Table 5. Definitions of Important Global Descriptors and Binary Indicators Including Connectivity Irtlices

index name information encoded
CSlogP predicted LogP (CSPredict v2.0.3.1 [18]) lipophilicity
TPSA total polar surface area topological surface area of hydrogen bonding atoms (Ertl method)
Gmin minimum atom level E-State value atom associated with a site of electrophilic attack

xp4 chi simple path 4

xp10 chi simple path 10
xch6 chi simple chain 6
xch10 chi simple chain 10

xv1l chivalence 1
connectivity index for path of length 1

Xvp8 chi valence path 8

xvpc4 chi valence path-cluster 4

xvché chi valence chain 6

xvch9 chi valence chain 9

xvch10 chi valence chain 10

dx1 chi simple difference 1

dx2 chi simple difference 2

dxp4 chi simple difference path 4

dxp5 chi simple difference path 5

dxv0 chi valence difference 0

dxvl chi valence difference 1

dxv2 chi valence difference 2

dxvp6 chi valence difference path 6

dxvp7 chi valence difference path 7

dxvp8 chi valence difference path 8

AromMol indicator variable for the presence of an aromatic group
SOAmide2 indicator variable for the presence of a secondary sulfonamide
NArom indicator variable for the presence of an aromatic nitrogen group

skeletal complexity and details of
arrangement of branching

complexity of large and fused ring systems
and degree of ring substitution

molecular weight and volume

presence of heteroatoms

skeletal complexity, branching, and heteroatoms
adjacency of branching

complexity of large and fused ring systems
and degree of ring substitution and
presence of heteroatoms

branching independent of molecular size

branching independent of molecular size
complexity of branching

branching independent of molecular size
presence of heteroatoms

branching independent of molecular size
complexity of branching
presence of heteroatoms

a Some specific information encoded by individual connectivity indices is listed after the forst three entries. In models of large diverse da@gets, h
the principle impact of the molecular connectivity indices is not expressed in the form of a specific independent contribution for each index ast rath
collectively encoded information useful in differentiating among the different types of skeletal scaffolds that are present in the training set.

a maximum or minimum; still others show a sigmoidal-like associated with seven descriptors (logP, SallNp, Gmin, Ssp3N,
relationship. An interesting result was found among the trends SHBint4, xt10, and eaC2N2a) common to both ANN and MLR
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Table 6. Definitions of Important Atom-type and Hydrogen Atom-type

Votano et al.

Table 7. Definitions of Important Bond-type Descriptors in the Four

Descriptors in the Four Models Models
Index Description Illustration Index Description Ilustration
SsssCH  Sum of atom level E-state values of all methine \g - eaC2C2a  Sum of the bond E-state values for unsubstitued aromatic carbons Yoy
carbon atoms in the molecule [ "ILH
-
SssssC Sum of atom level E-state values of all quaternary N eaC2C3s  Sum of bond E-state values for aromatic carbons N
P ¢
carbon atoms in the molecule with one substituent group |
-~CH
. e
SdsCH Sum of atom level E-state values of all vinyl g/ e1C3N3 Sum of bond E-State values between tertiary ~
N
carbon atoms in the molecule I amines and >CH— carbon atoms |
SaaCH Si f atom level E-state val f bstituted /c\
aa um ot atom fevel E-state values o unsubstitute \\g el1C3N1d Sum of bond E-State values between imine NH
h]
i in the molecul !
aromatic carbon atoms in the molecule nitrogen atoms and >CH— carbon atorms !!
SaasC Sum of atom level E-state values of all substituted R 7N
¢
N
aromatic carbon atoms in the molecule H I . N .
eaC2N2a Sum of the bond E-state values for aromatic bond NcH
SHvin Sum of atom level hydrogen E-state values of all Nc—H . 1
[ between carbon and nitrogen ?N
hyd toms in the molecule on vinyl carbons C—H
yerogen atoms In the molecule on ViR - €2C301s Sum of the bond E-state values for double bonds o)
SsNH2 Sum of atom level E-state values of all primary M I
—N between carbonyl oxygen and >C- carbon atoms /C\
amine nitrogen atoms in the molecule “H
SsssN. Sum of atom level E-state values of all tertiary elC301d  Sum of the bond E-state values for single bond TH
—N
amine nitrogen atoms in the molecule between alcohol oxygen and =C- carbon atoms /C\
Ssp3NH Sum of E-states values of all secondary amine (Sp3)c\ /C (sp%)
in the molecule that are bonded to two sp3 carbons u e1C3S4da Sum of the bond E-State values for single bond _ é _
Ssp3N Sum of E-states values of all tertiary amine C(spd) between aromatic carbon and ddss sulfur atom N
e N
in the molecule that are bonded to three sp3 carbons (spC—N 5 eIN2S4dd Sum of the bond E-State values for single bond |
cpd) —s—
SaaN Sum of atom level E-states values of all pyridine NN between secondary amine nitrogen atoms and |
) NH
nitrogen atoms in the molecule ' l and ddss sulfur atom
SaasN Sum of atom level E-states values of all substituted ~ _R
) ) SN Table 8. Definitions of Important Group-type and Single-Atom
pyrole nitrogen atoms in the molecule ! Descriptors in the Four Models
H
SArNH2 Sum of atom level E-states values of all primary ‘\)> N/ Index Description Ilustration
b \
aniline nitrogen atoms in the molecule H SCarom Sum of E-state values for all substituted and ~ _R
¢
Ssp2OH Sum of atom level E-states values of all -OH \\ H unsubsituted aromatic carbon atoms | :>
oxygen atoms in the molecule that are bonded /C—O SsFCl1 Sum of atom E-state values for all fluorine and —ZI
to a sp2 carbon atom chlorine atoms in the molecule —F
SddssS  Sum of atom level E-states values of all ddss \s / SHArom  Sum of HE-state values for all hydrogen atoms N, C/H
sulfur atoms / \ attached to aromatic carbon atoms . ;
SsCl Sum of atom level E-state values for all chlorine —cCl
) SallNp Sum of E-state values for all quaternary, pyridinium N#
atoms in the molecule
and aminium nitrogen atoms in the molecule \*N';/ B N+/
I I
models. All seven indices exhibited identical positive (or i
SotArom Sum of atom E-state values for all heteroaromatic

negative) trends in these two models: This finding may
underscore the importance of these descriptors. It is apparent

from the trends that hydrophilicity, aromaticity, presence of a

ring structure, and the presence and bonding state of amines sPheoH1
play important stereochemical roles in serum plasma protein
binding of the compounds.

SHCarOH1
Discussion
To provide a basis for relating many of the most-important S
descriptors found in the four QSAR models to physicochemical
properties of the compounds in this study, Table 9 presents a
profile of ionization states. The percentage of compounds iS  supint

given for each of four groups: acid, base, neutral, zwitterionic,
and permanently charged compounds (e.g., quaternary nitrogen

atoms in the molecule (pyridine, pyrole, substituted
pyrole, thiophene or furan)

Largest E-state value of all phenolic oxygen atoms
In the molecule

Largest HE-state value in the molecule of all hydrogen
atoms bonded to carboxyl oxygens (acidic oxygen)
Largest product of E-state and HE-state from all
acceptor(A) and donor(D) pairs in the molecule
separated by 2 skeletal bonds

Largest product of E-state and HE-state from all
acceptor(A) and donor(D) pairs in the molecule

separated by 4 skeletal bonds

atoms). lonization state applies to pH 7.4 for the train/test and
validation datasets. Approximately 90% of the 808 members

in the train/test set are evenly represented by acids, bases, andre zwitterions and 3% with a permanent positive charge. The
neutral entities. Approximately 7% of the remaining members ANN descriptors clearly indicate the importance of ionizable
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Table 9. Characterization of lonizable Compounds in Train/Test and
Validation Sets at pH 7.4

compounds number percént  Mwe CSLogP
Training Set
acict 213 26.4% 369.7 1.65
base 249 30.8% 347.0 2.22
neutral 268 33.2% 350.3 1.66
zwitterionic 56 6.9% 406.8 —0.01
permanent)® 22 2.7% 460.5
Validation Set

acid? 46 23.0% 371.4 2.08
base 63 31.5% 376.2 221
neutral 67 33.5% 354.8 1.55
zwitterionic 21 10.5% 343.1 —0.38
permanent+)e 3 1.5% 491.9

aAcid, base, zwitterion, or neutral compound determined by estimated
pKa values for the compound’s ionizable groups using thetG$wedictor
from ChemsSilico LLC.? Percent of train or test set in each ionization group.
¢ Average molecular weight for ionization clagsAverage predicted logP
for ionization class® Compounds with permanent positive charge are
quarternary amines, pyridinium, or animinium compounds.

and formally charged groups by including two descriptors for
carboxylic acids [SHCarOH1, SCarOH1], five for bases [Ssp3N
and Ssp3NH (N bonded only tosparbons), SsSNH2, and SsssN

Journal of Medicinal Chemistry, 2006, Vol. 49, N8124

binding of drug or drug-like compounds have focused on
moderately sized datas&td®2733 with the exception of one
large chemometric analysi$in all of these studies, calculated
logP was found to be the most important descriptor in QSAR
models involving other physicochemical parameters. By con-
trast, LogD was found to have little or no correlation to HSA
binding?-31

In one particular study by Colmenaréjasing HSA-HPLC
affinity column chromatography data (based on immobilized
albumin) on 94 drugs, xch6 (a ring molecular connectivity
descriptor) was found in two models, ranked second behind logP
in importance, followed by three electronic and surface area
descriptors. The purpose of this model was to predict the
retention index, logk(HSA), which is considered to be directly
correlated to %PB. Using the reported HPLC data from this
latter study, Hall et a¥? developed a QSAR-MLR model
constructed only on topological indices without the use of logP.
With only five topological indices employed, the 84 drugs in
the training set gave ar? = 0.77 for all 84 compounds. In the
Colmenarejo model, only 79 compounds were included because
five were found to be large outliers, for the diminished data set
r2 = 0.78. With a 10 compound validation set and the five
topological indices, the Hall QSAR model gave an MAE

(bonded to any type carbon), e1C3N3], and finally SallNp (@ 31 with no large residuals. Of the five descriptors found
permanent positive charge on nitrogen). The negative trend (gcarom, xch6, SSFCI, SHCsats, and SsOH), the first three are

found for SallNp in both ANN and MLR is consistent with the
general tendency for compounds with a formal positive charge
to have low protein binding. Tables—8 give a listing and
description of many of the most important descriptors in these
four QSAR models.

The kNN, MLR, and SVM models had no important
descriptors that represent carboxylic acid. However, a binary
indicator (SOAmide2) for the presence/absence of sulfonyl
secondary amide was included in the MLR and SVM models
where the amine may likely be partially or fully deprotonated
at pH 7.4, hence, acidic. For the SVM model, two indices for
carboxylic acids occur but they are not in the top 20 descriptors.
The ANN model had four amine descriptors (Ssp3N, e1C3N3,
Ssp3NH, SsNH2) in the top 20 ranked members reflecting the
importance, in a negative sense, of amines in protein binding
for this model. In contrast, there were only two or less amine
descriptors among the important members for kNN, MLR, or
SVM models; while, on the other hand, all of these three models
did include SallNp. Aromaticity is another important physico-
chemical property of these drugs; 81% of the 808 train/test
dataset contain one or more aromatic rings (Table 1). In all four

models, four or more aromatic descriptors were found as being
important either as atom or bond-type E-states; i.e., SCarom

(sum E-states for all aromatic carbon types) was included in
the ANN, KNN, and SVM models. The bond-type E-States,
eaC2N2a (E-State for bond between aromatic C and N),

eaC2C3s (bond E-State between two aromatic carbons, one witH
a substituent group), and SaaN (sum of E-States for aromatic

nitrogen atoms) were included in one or more of the models.

found among the most important variables in our QSAR protein
binding models; the last two of secondary importance.

The structure descriptors found to be important in the ANN
model may be compared to fragments from a chemometric
model involving affinity binding to the 3A subdomain of HSA.

The model was based on contributions of 74 fragments for a
data set of 889 compounds. These data was composed of 232
compounds withKg < 1072 M, considered as active binders,
and 657 compounds considered inactive (poor binders Kyjth
>103 M). Table 10 summarizes the comparison of relevant
ANN descriptor trends with fragments counts. Eighteen indi-
vidual topological descriptors out of 33 from the ANN model
could be mapped specifically to drug fragments found important
for binding to the 3A subdomain. More notably all 18 topologi-
cal descriptors had their predominant trends in the same direction
as trends based on the sign of the weights assigned to fragments
in the 3A domain binding study model. Minor exceptions are
also evident in Table 10 with respect to trends based on the
descriptors (signified by- and— signs) versus trends assigned

to fragments. Nonetheless, it is gratifying that such an agreement
exists among trends in the ANN model and those coming from
the fragment approach, considering the following:

(a) The fragment model is based only on 3A subdomain
affinity binding whereas the ANN train set involved intact HSA.

(b) The fragment model is based on a linear regression model
ather than the nonlinear machine-learning algorithm with its
totally different selection processes for the independent variables.

(c) The fragment model uses affinity dissociation constants,

Therefore, in varying degrees the models reflect the importance Ka. to develop the fragment model rather than %PB values as

of both ionizable groups and aromaticity. In some cases,

analogous descriptors are included in different models (see Table

used here in the QSAR ANN model.
It is also worth noting in the MLR %PB model, 10 out of 14

4). For example, eaC2C3s found in the ANN and SaasC in the of the highly ranked topological indices have the same trend as
MLR model are analogous for both aromatic atoms and bonds the corresponding fragments. Although a trend analysis is not

with substituents.
Let us now consider how these important topological descrip-
tors, the 19 together with logP in Table 4, relate to QSAR

available for the kNN and SVM models, 15 out of 28 and 23
out of 60 topological indices, respectively, have bond-type or
atom-type E-states corresponding to fragments found in the list

variables found in previous studies on serum plasma proteinsof 74 fragments?

or HSA binding. Recent efforts over several years to develop
QSAR models for serum protein or human serum albumin

Unfortunately, no major study specific to Site 1, the warfarin
site, in the lIIA subdomain of HSA has been conducted as with
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Table 10. Comparison of Trends for ANN Descriptors and Fragment
Based QSAR Model

ANN descriptor trendl fragment-type trend
Ssp3N - amines -
Ssp3NH - (—=NHgz, >NH, >N-)

SsNH2 - piperidine +

e1C3N3 —/+ pyrrolidine +

elC2N2 =+ morpholine +

e2C301s - amides -

SHBInt2 + ketone -
aldehyde -
ester -
ureas -
hydantoin -
pyrimidinone -
pyrrolinone -
piperdinone -
carbamates -

SallNp - guaternary amine -

SPheOH1 -+ phenol -

SCarOH1 + —COH +

SHBInt2 +

SCarom + non-N-heteroaromatics

SotArom + naphthalene

xchl0 + phenyl

eaC2C3s +

SCarom + N-heteroaromatics +

SotArom +

eaC2C3s +

eaC2N2a +

SssS - thioether -

SssO - ether -

SssCH2 + methylene +

aTrend sign is the mean antt or —/+ to indicate the top sign is
dominate and lower 50% of train set of compound&Data from ref 33.
¢ Fragmentt trend signifies presence of fragment increased binding to the
3A-domain of HSA or the reverse antl indicates exceptions.

Site 2 binders. Nonetheless, 14 compounds contained in our
808 train set are listed as bindete Site 1 and provide some
limited insight into trends of the ANN model’s top 20 indices
in regard to Site 1 binders. All of these 14 compounds contain
at least one aromatic ring, five with heteroaromatic rings, and
four with two-membered, fused ring systems. The 14 compounds
were ceftriaxone, chlorpropamide, dicoumarol, etodolac, furo-
semide, indomethacin, oxyphenbutazone, phenylbutazone, phen
toin, sulfathiazole, suprofen, thyroxine, urapidil, and warfarin.
Looking at compounds where at least 6 out 14 compounds
contained the same descriptor, left 10 suitable topological indices
to examine from 20 important ANN descriptors. SsNH2,
€2C301s, Gmin, and SCarOHL1 all showed a negative trend
indicating presence of a carboxylic acid or amine or electron
withdrawing group signified by Gmin. Each one resulted in
diminished binding at Site 1. Not too surprising was the positive
trends for bond and E-States related to aromaticity; i.e.,
eaC2C2a, eaC2C3s (branched aromatic carbon), SCarom, an
SotArom. SHBint4 and SHBInt2 both showed a positive trend.

y
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dependency on %PB values until a much larger number of Site
1 binders are identified. Of two remaining identical descriptors,
Gmin and SHBInt4, found in both the MLR and ANN models,
their trends in MLR model were same as the trends observed
in the ANN trend analysis. These limited results on the trends
for site | binders for various descriptors in the ANN are mainly
consistent with what is known about Site 1 binders. They are
bulky heterocyclic compounds.

Conclusions

Results in this study clearly demonstrate the usefulness of
topological descriptors in combination with logP to tackle the
difficult problem of human serum protein binding prediction.
The statistical results on the external validation set indicate that
the ANN model is useful for prediction of new chemical entities.
These current results are consistent with others obtained earlier
using the structureinformation approach for aqueous solubility,
human intestinal absorption, and Ames mutagenitity®

Of the four models presented in this study, ANN and kNN
are the two most robust ensemble models with a distinct
difference; the kNN model employed about 50% more con-
nectivity indices and 50% fewer atom-type E-state descriptors
than the ANN model. Such differences may reflect, in part,
establishment of nonlinear relationships between protein binding
and descriptors by the ANN learning algorithm as compared to
molecular similarity matching by the KNN approach. Nonethe-
less, an analysis of the structure descriptors found in the ANN
and KNN models provides a basis for the chemist to develop
structure modifications during the drug design process. The role
of nitrogen-containing compounds, acids, aromatic entities
(atom-type and bond-type E-State descriptors), and skeletal
ramification (molecular connectivity chi indices) are all included
in the structure-information. For each descriptor the trend with
respect to protein binding is reported and can be used as an
indication of the impact of structure modification on predicted
protein binding.

The structure descriptors included in the ANN model were
compared to a list of fragments found important for ligand
binding to the I1lIA subdomain of albumin. Analysis of the IlIA
fragment trends with those of important modeling descriptors
in this study clearly demonstrates the structtirdormation
content of topological indices can be related directly back to
fragments. This information complements what we know about
fragment contributions as they relate to topological indices and
makes the topological structure descriptors that much more
relevant to the chemist. Use of fragments suffers from the
problem that an individual fragment may or may not correspond
to an active modulator depending on compound. Further,
compounds with missing fragments cannot be predicted by such

method. Topological structure descriptors generally do not

uffer from these problents.

The latter descriptor suggests that amides, contained in seven Supporting Information Available: A listing by name, chemi-

compounds, may aid in binding as well as H-acceptor/donor

cal formula, molecular weight, and experimental percent binding

groups separated by four bonds as in the case of SHBint4. Theto serum proteins is provided. This material is available free of

most surprising finding among these 14 Site 1 binders was
compound lipophilicity. It appeared to have a neutral effect.

The computed logP ranged from 0.38 to 3.98 for the 14
compounds but the trend was flat with large changes in logP
for these compounds. A similar trend analysis with the MLR

model also showed this same neutral influence of logP on %PB
values of these Site 1 binders. This is in stark contrast to the
pronounced, positive dependency on logP for Site 2 binders.
Since the number of Site 1 compounds was limited here, no
firm conclusion can be draw on this observed lack of logP

charge via the Internet at http://pubs.acs.org.
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